Compute the Bessel function of the second kind of order zero.
The Bessel function of the second kind of order zero is defined as
var y0 = require( '@stdlib/math/base/special/bessely0' );
Computes the Bessel function of the second kind of order zero at x
.
var v = y0( 0.0 );
// returns -Infinity
v = y0( 1.0 );
// returns ~0.088
v = y0( Infinity );
// returns 0.0
If x < 0
or x
is NaN
, the function returns NaN
.
var v = y0( -1.0 );
// returns NaN
v = y0( -Infinity );
// returns NaN
v = y0( NaN );
// returns NaN
var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var bessely0 = require( '@stdlib/math/base/special/bessely0' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 100, 0.0, 100.0, opts );
logEachMap( 'bessely0(%0.4f) = %0.4f', x, bessely0 );
#include "stdlib/math/base/special/bessely0.h"
Computes the Bessel function of the second kind of order zero at x
.
double out = stdlib_base_bessely0( 0.0 );
// returns -Infinity
out = stdlib_base_bessely0( 1.0 );
// returns ~0.088
The function accepts the following arguments:
- x:
[in] double
input value.
double stdlib_base_bessely0( const double x );
#include "stdlib/math/base/special/bessely0.h"
#include <stdio.h>
int main( void ) {
const double x[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };
double y;
int i;
for ( i = 0; i < 5; i++ ) {
y = stdlib_base_bessely0( x[ i ] );
printf( "bessely0(%lf) = %lf\n", x[ i ], y );
}
}
@stdlib/math/base/special/besselj0
: compute the Bessel function of the first kind of order zero.@stdlib/math/base/special/besselj1
: compute the Bessel function of the first kind of order one.@stdlib/math/base/special/bessely1
: compute the Bessel function of the second kind of order one.