Compute the Bessel function of the first kind of order one.
The Bessel function of the first kind of order one is defined as
var j1 = require( '@stdlib/math/base/special/besselj1' );
Computes the Bessel function of the first kind of order one at x
.
var v = j1( 0.0 );
// returns 0.0
v = j1( 1.0 );
// returns ~0.440
v = j1( Infinity );
// returns 0.0
v = j1( -Infinity );
// returns 0.0
v = j1( NaN );
// returns NaN
var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var besselj1 = require( '@stdlib/math/base/special/besselj1' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 100, 0.0, 100.0, opts );
logEachMap( 'besselj1(%0.4f) = %0.4f', x, besselj1 );
#include "stdlib/math/base/special/besselj1.h"
Computes the Bessel function of the first kind of order one at x
.
double out = stdlib_base_besselj1( 0.0 );
// returns 0.0
out = stdlib_base_besselj1( 1.0 );
// returns ~0.440
The function accepts the following arguments:
- x:
[in] double
input value.
double stdlib_base_besselj1( const double x );
#include "stdlib/math/base/special/besselj1.h"
#include <stdio.h>
int main( void ) {
const double x[] = { 0.0, 0.005, 3.14, 10.0, 51.125, 99.99, 100.0 };
double v;
int i;
for ( i = 0; i < 7; i++ ) {
v = stdlib_base_besselj1( x[ i ] );
printf( "besselj1(%lf) = %lf\n", x[ i ], v );
}
}
@stdlib/math/base/special/besselj0
: compute the Bessel function of the first kind of order zero.@stdlib/math/base/special/bessely0
: compute the Bessel function of the second kind of order zero.@stdlib/math/base/special/bessely1
: compute the Bessel function of the second kind of order one.