Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y1

Compute the Bessel function of the second kind of order one.

The Bessel function of the second kind of order one is defined as

$$Y_1(x) = \frac{1}{\pi} \int_0^\pi \sin(x \sin\theta - \theta) \, d\theta -\frac{1}{\pi} \int_0^\infty \left[ e^t - e^{-t} \right] e^{-x \sinh t} \, dt$$

Usage

var y1 = require( '@stdlib/math/base/special/bessely1' );

y1( x )

Computes the Bessel function of the second kind of order one at x.

var v = y1( 0.0 );
// returns -Infinity

v = y1( 1.0 );
// returns ~-0.781

v = y1( Infinity );
// returns 0.0

If x < 0 or x is NaN, the function returns NaN.

var v = y1( -1.0 );
// returns NaN

v = y1( -Infinity );
// returns NaN

v = y1( NaN );
// returns NaN

Examples

var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var bessely1 = require( '@stdlib/math/base/special/bessely1' );

var opts = {
    'dtype': 'float64'
};
var x = uniform( 100, 0.0, 100.0, opts );

logEachMap( 'bessely1(%0.4f) = %0.4f', x, bessely1 );

See Also