Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
Find the minimum element.
The array may contain duplicates.
Example 1:
Input: [1,3,5] Output: 1
Example 2:
Input: [2,2,2,0,1] Output: 0
Note:
- This is a follow up problem to Find Minimum in Rotated Sorted Array.
- Would allow duplicates affect the run-time complexity? How and why?
class Solution:
def findMin(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
m = (l + r) >> 1
if nums[m] > nums[r]:
l = m + 1
elif nums[m] < nums[r]:
r = m
else:
r -= 1
return nums[l]
class Solution {
public int findMin(int[] nums) {
int l = 0, r = nums.length - 1;
while (l < r) {
int m = (l + r) >>> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
}
}
class Solution {
public:
int findMin(vector<int>& nums) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int m = (l + r) >> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
}
};
/**
* @param {number[]} nums
* @return {number}
*/
var findMin = function (nums) {
let l = 0,
r = nums.length - 1;
while (l < r) {
const m = (l + r) >> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
};