Calculate the arithmetic mean of a strided array using Welford's algorithm.
The arithmetic mean is defined as
var meanwd = require( '@stdlib/stats/base/meanwd' );
Computes the arithmetic mean of a strided array x
using Welford's algorithm.
var x = [ 1.0, -2.0, 2.0 ];
var N = x.length;
var v = meanwd( N, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - strideX: stride length for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var v = meanwd( 4, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = meanwd( 4, x1, 2 );
// returns 1.25
Computes the arithmetic mean of a strided array using Welford's algorithm and alternative indexing semantics.
var x = [ 1.0, -2.0, 2.0 ];
var v = meanwd.ndarray( 3, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other element in the strided array starting from the second element
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var v = meanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
- If
N <= 0
, both functions returnNaN
. - Both functions support array-like objects having getter and setter accessors for array element access (e.g.,
@stdlib/array/base/accessor
). - Depending on the environment, the typed versions (
dmeanwd
,smeanwd
, etc.) are likely to be significantly more performant.
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var meanwd = require( '@stdlib/stats/base/meanwd' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );
var v = meanwd( x.length, x, 1 );
console.log( v );
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.
@stdlib/stats/strided/dmeanwd
: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.@stdlib/stats/base/mean
: calculate the arithmetic mean of a strided array.@stdlib/stats/base/nanmeanwd
: calculate the arithmetic mean of a strided array, ignoring NaN values and using Welford's algorithm.@stdlib/stats/strided/smeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.