Skip to content

Files

Latest commit

9f85b5d · Apr 25, 2025

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025
Apr 25, 2025
Mar 29, 2025
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025
Feb 19, 2025

dmeanwd

Calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.

The arithmetic mean is defined as

μ = 1 n i = 0 n 1 x i

Usage

var dmeanwd = require( '@stdlib/stats/strided/dmeanwd' );

dmeanwd( N, x, strideX )

Computes the arithmetic mean of a double-precision floating-point strided array x using Welford's algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dmeanwd( x.length, x, 1 );
// returns ~0.3333

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the arithmetic mean of every other element in x,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var v = dmeanwd( 4, x, 2 );
// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dmeanwd( 4, x1, 2 );
// returns 1.25

dmeanwd.ndarray( N, x, strideX, offsetX )

Computes the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other element in x starting from the second element

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dmeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25

Notes

  • If N <= 0, both functions return NaN.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dmeanwd = require( '@stdlib/stats/strided/dmeanwd' );

var x = discreteUniform( 10, -50, 50, {
    'dtype': 'float64'
});
console.log( x );

var v = dmeanwd( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/stats/strided/dmeanwd.h"

stdlib_strided_dmeanwd( N, *X, strideX )

Computes the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.

const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dmeanwd( 3, x, 1 );
// returns ~0.333

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
double stdlib_strided_dmeanwd( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dmeanwd_ndarray( N, *X, strideX, offsetX )

Computes the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm and alternative indexing semantics.

const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dmeanwd_ndarray( 3, x, 1, 0 );
// returns ~0.333

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dmeanwd_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/stats/strided/dmeanwd.h"
#include <stdint.h>
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

    // Specify the number of elements:
    const int N = 4;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the minimum value:
    double v = stdlib_strided_dmeanwd( N, x, strideX );

    // Print the result:
    printf( "mean: %lf\n", v );
}

References

  • Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
  • van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.

See Also