forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
executable file
·182 lines (145 loc) · 5.26 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3
# Simple script to convert StackExchange XML to Open Assistant format
# Original code by https://github.com/b-mc2
import gc
import glob
import os
import re
import subprocess
import sys
import pandas as pd
from html2text import html2text
from lxml import etree
from tqdm import tqdm
XML_DIR = "./xml"
SOURCE = "stackexchange-{0}"
MAX_ANSWERS = 10
QUESTION_SCORE_TRESHOLD = 0
ANSWER_SCORE_TRESHOLD = 0
PARQUET_FILE = "parquet/{0}.parquet"
MAX_LENGTH = 1000 # max length of question or answer
def main():
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
for dataset in datasets:
process_dataset(dataset)
def list_cached_datasets():
xml_files = glob.glob(f"{XML_DIR}/*.xml")
datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files]
datasets.sort()
return datasets
def process_dataset(dataset):
xml_file = f"{XML_DIR}/{dataset}.xml"
parquet_file = PARQUET_FILE.format(dataset)
source = SOURCE.format(dataset)
if not os.path.exists(xml_file):
print(f"XML file {xml_file} not found, please download first. Skipping...")
elif not os.path.exists(parquet_file):
df = parse_and_convert(xml_file, source)
save_parquet(df, dataset)
else:
print(f"File already converted {xml_file}. Skipping...")
def parse_and_convert(path: str, source: str):
"""
Parse (very large) XML files with sax parser and load it into a pandas Dataframe
"""
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}"))
print(f"Parsing {total_rows} rows from {path}...")
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId"
rows = []
max_process = 10**6
processed = 0
oa_df = pd.DataFrame(columns=["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"])
context = etree.iterparse(path, events=("end",))
for _, element in tqdm(context, total=total_rows):
if element.tag == "row":
if len(element.get("Body")) > MAX_LENGTH:
continue
rows.append(parse_row(element))
processed += 1
element.clear()
while element.getprevious() is not None:
del element.getparent()[0]
if processed % max_process == 0 or processed == total_rows:
df = pd.DataFrame(rows, columns=columns.split())
rows = []
oa = convert_to_oa(df, source)
oa_df = pd.concat([oa_df, oa])
del df
del oa
gc.collect()
return oa_df
def parse_row(element):
return [
int(element.get("Id")),
int(element.get("PostTypeId")),
element.get("Body"),
element.get("Title", ""),
element.get("Tags", ""),
int(element.get("Score", 0)),
int(element.get("AcceptedAnswerId", 0)),
int(element.get("ParentId", 0)),
]
def convert_to_oa(all, source):
"""
Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns
Only include questions with an AcceptedAnswerId
"""
questions = all[all["AcceptedAnswerId"] != 0]
merged = pd.merge(
questions,
all,
how="inner",
left_on="AcceptedAnswerId",
right_on="Id",
suffixes=("_q", "_a"),
)
del all
merged["INSTRUCTION"] = merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
merged["SOURCE"] = source
merged["METADATA"] = merged.apply(create_metadata, axis=1)
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
def convert_tags(raw):
return raw.replace("-", " ").replace("><", ", ").replace("<", "").replace(">", "")
def create_metadata(row):
return {
"tags": convert_tags(row["Tags_q"]),
"question_score": row["Score_q"],
"answer_score": row["Score_a"],
}
def save_parquet(df, dataset):
"""
Save Dataframe to Parquet. See here for specs:
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
"""
os.makedirs("parquet", exist_ok=True)
parquet_file = PARQUET_FILE.format(dataset)
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
print(f"Converted {len(df)} instructions into {parquet_file}")
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
remove_remaining_links = r"https?:\/\/[^\s]+"
def remove_emojis(string):
emoji_pattern = re.compile(
"["
"\U0001F600-\U0001F64F" # emoticons
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F680-\U0001F6FF" # transport & map symbols
"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U00002702-\U000027B0"
"\U000024C2-\U0001F251"
"]+",
flags=re.UNICODE,
)
return emoji_pattern.sub(r"", string)
# Replace HTML content to markdown but remove links
def to_markdown(text):
try:
text = html2text(text, bodywidth=0).strip()
except Exception as e:
print(e)
text = re.sub(r"<[^>]*>", "", str(text))
text = re.sub(remove_markdown_links_pattern, r"\1", text)
text = remove_emojis(text)
return re.sub(remove_remaining_links, "", text)
if __name__ == "__main__":
main()