Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Add dropna parameter to Series.unique() (fixes #61209) #61235

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 19 additions & 2 deletions pandas/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
)

import numpy as np
from typing import Any
from pandas._typing import ArrayLike

from pandas._libs import lib
from pandas._typing import (
Expand Down Expand Up @@ -1096,13 +1098,28 @@ def value_counts(
dropna=dropna,
)

def unique(self):
def unique(self, dropna: bool = True) -> ArrayLike:
"""
Return unique values in the object.

Parameters
----------
dropna : bool, default True
If True, exclude NA/null values.

Returns
-------
ndarray or ExtensionArray
"""
values = self._values
if not isinstance(values, np.ndarray):
# i.e. ExtensionArray
# For ExtensionArray
result = values.unique()
else:
result = algorithms.unique1d(values)

if dropna:
result = result[~isna(result)]
return result

@final
Expand Down
74 changes: 16 additions & 58 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -2084,72 +2084,30 @@ def mode(self, dropna: bool = True) -> Series:
dtype=self.dtype,
).__finalize__(self, method="mode")

def unique(self) -> ArrayLike:
def unique(self, dropna: bool = True) -> ArrayLike:
"""
Return unique values of Series object.

Uniques are returned in order of appearance. Hash table-based unique,
therefore does NOT sort.


Parameters
----------
dropna : bool, default True
If True, exclude NA/null values.

Returns
-------
ndarray or ExtensionArray
The unique values returned as a NumPy array. See Notes.

See Also
--------
Series.drop_duplicates : Return Series with duplicate values removed.
unique : Top-level unique method for any 1-d array-like object.
Index.unique : Return Index with unique values from an Index object.

Notes
-----
Returns the unique values as a NumPy array. In case of an
extension-array backed Series, a new
:class:`~api.extensions.ExtensionArray` of that type with just
the unique values is returned. This includes

* Categorical
* Period
* Datetime with Timezone
* Datetime without Timezone
* Timedelta
* Interval
* Sparse
* IntegerNA

See Examples section.

The unique values returned as a NumPy array or ExtensionArray.

Examples
--------
>>> pd.Series([2, 1, 3, 3], name="A").unique()
array([2, 1, 3])

>>> pd.Series([pd.Timestamp("2016-01-01") for _ in range(3)]).unique()
<DatetimeArray>
['2016-01-01 00:00:00']
Length: 1, dtype: datetime64[s]

>>> pd.Series(
... [pd.Timestamp("2016-01-01", tz="US/Eastern") for _ in range(3)]
... ).unique()
<DatetimeArray>
['2016-01-01 00:00:00-05:00']
Length: 1, dtype: datetime64[s, US/Eastern]

An Categorical will return categories in the order of
appearance and with the same dtype.

>>> pd.Series(pd.Categorical(list("baabc"))).unique()
['b', 'a', 'c']
Categories (3, object): ['a', 'b', 'c']
>>> pd.Series(
... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True)
... ).unique()
['b', 'a', 'c']
Categories (3, object): ['a' < 'b' < 'c']
>>> s = pd.Series([1, 2, 2, pd.NA])
>>> s.unique()
array([1, 2])

>>> s.unique(dropna=False)
array([1, 2, <NA>], dtype=object)
"""
return super().unique()
return super().unique(dropna=dropna)

@overload
def drop_duplicates(
Expand Down
38 changes: 38 additions & 0 deletions pandas/tests/series/test_arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -958,3 +958,41 @@ def test_rmod_consistent_large_series():
expected = Series([1] * 10001)

tm.assert_series_equal(result, expected)

from pandas._testing import assert_numpy_array_equal, assert_extension_array_equal

# Test Case 1: Basic numeric unique with NA (dropna=False)
def test_unique_numeric_dropna_false():
s = pd.Series([1, 2, 2, pd.NA, 3, pd.NA])
result = s.unique(dropna=False)
expected = np.array([1, 2, pd.NA, 3], dtype=object)
assert_numpy_array_equal(result, expected)

# Test Case 2: Empty Series
def test_unique_empty_series():
s = pd.Series([], dtype='float64')
result = s.unique()
expected = np.array([], dtype='float64')
assert_numpy_array_equal(result, expected)

# Test Case 3: Categorical data
def test_unique_categorical():
s = pd.Series(pd.Categorical(['a', 'b', 'a', pd.NA]))
result = s.unique(dropna=False)
expected = pd.Categorical(['a', 'b', pd.NA])
assert_extension_array_equal(result, expected)


# Test Case 4: NA values
def test_unique_with_nas_simple():
s = pd.Series([1, 2, 2, pd.NA, 3, pd.NA], dtype='Int64')

# Current behavior (returns ExtensionArray)
result = s.unique()
expected = pd.array([1, 2, 3], dtype='Int64')
tm.assert_extension_array_equal(result, expected)

# With dropna=False
result_with_na = s.unique(dropna=False)
expected_with_na = pd.array([1, 2, pd.NA, 3], dtype='Int64')
tm.assert_extension_array_equal(result_with_na, expected_with_na)
Loading