Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TST: series/indexing tests parameterization + moving test methods #20059

Merged
merged 1 commit into from
Mar 10, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
201 changes: 119 additions & 82 deletions pandas/tests/series/indexing/test_alter_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,88 +21,72 @@
JOIN_TYPES = ['inner', 'outer', 'left', 'right']


def test_align(test_data):
def _check_align(a, b, how='left', fill=None):
aa, ab = a.align(b, join=how, fill_value=fill)

join_index = a.index.join(b.index, how=how)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
if len(diff_a) > 0:
assert (aa.reindex(diff_a) == fill).all()
if len(diff_b) > 0:
assert (ab.reindex(diff_b) == fill).all()

ea = a.reindex(join_index)
eb = b.reindex(join_index)

if fill is not None:
ea = ea.fillna(fill)
eb = eb.fillna(fill)

assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
assert aa.name == 'ts'
assert ea.name == 'ts'
assert ab.name == 'ts'
assert eb.name == 'ts'

for kind in JOIN_TYPES:
_check_align(test_data.ts[2:], test_data.ts[:-5], how=kind)
_check_align(test_data.ts[2:], test_data.ts[:-5], how=kind, fill=-1)

# empty left
_check_align(test_data.ts[:0], test_data.ts[:-5], how=kind)
_check_align(test_data.ts[:0], test_data.ts[:-5], how=kind, fill=-1)

# empty right
_check_align(test_data.ts[:-5], test_data.ts[:0], how=kind)
_check_align(test_data.ts[:-5], test_data.ts[:0], how=kind, fill=-1)

# both empty
_check_align(test_data.ts[:0], test_data.ts[:0], how=kind)
_check_align(test_data.ts[:0], test_data.ts[:0], how=kind, fill=-1)


def test_align_fill_method(test_data):
def _check_align(a, b, how='left', method='pad', limit=None):
aa, ab = a.align(b, join=how, method=method, limit=limit)

join_index = a.index.join(b.index, how=how)
ea = a.reindex(join_index)
eb = b.reindex(join_index)

ea = ea.fillna(method=method, limit=limit)
eb = eb.fillna(method=method, limit=limit)

assert_series_equal(aa, ea)
assert_series_equal(ab, eb)

for kind in JOIN_TYPES:
for meth in ['pad', 'bfill']:
_check_align(test_data.ts[2:], test_data.ts[:-5],
how=kind, method=meth)
_check_align(test_data.ts[2:], test_data.ts[:-5],
how=kind, method=meth, limit=1)

# empty left
_check_align(test_data.ts[:0], test_data.ts[:-5],
how=kind, method=meth)
_check_align(test_data.ts[:0], test_data.ts[:-5],
how=kind, method=meth, limit=1)

# empty right
_check_align(test_data.ts[:-5], test_data.ts[:0],
how=kind, method=meth)
_check_align(test_data.ts[:-5], test_data.ts[:0],
how=kind, method=meth, limit=1)

# both empty
_check_align(test_data.ts[:0], test_data.ts[:0],
how=kind, method=meth)
_check_align(test_data.ts[:0], test_data.ts[:0],
how=kind, method=meth, limit=1)
@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('join_type', JOIN_TYPES)
@pytest.mark.parametrize('fill', [None, -1])
def test_align(test_data, first_slice, second_slice, join_type, fill):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]

aa, ab = a.align(b, join=join_type, fill_value=fill)

join_index = a.index.join(b.index, how=join_type)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
if len(diff_a) > 0:
assert (aa.reindex(diff_a) == fill).all()
if len(diff_b) > 0:
assert (ab.reindex(diff_b) == fill).all()

ea = a.reindex(join_index)
eb = b.reindex(join_index)

if fill is not None:
ea = ea.fillna(fill)
eb = eb.fillna(fill)

assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
assert aa.name == 'ts'
assert ea.name == 'ts'
assert ab.name == 'ts'
assert eb.name == 'ts'


@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('join_type', JOIN_TYPES)
@pytest.mark.parametrize('method', ['pad', 'bfill'])
@pytest.mark.parametrize('limit', [None, 1])
def test_align_fill_method(test_data,
first_slice, second_slice,
join_type, method, limit):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]

aa, ab = a.align(b, join=join_type, method=method, limit=limit)

join_index = a.index.join(b.index, how=join_type)
ea = a.reindex(join_index)
eb = b.reindex(join_index)

ea = ea.fillna(method=method, limit=limit)
eb = eb.fillna(method=method, limit=limit)

assert_series_equal(aa, ea)
assert_series_equal(ab, eb)


def test_align_nocopy(test_data):
Expand Down Expand Up @@ -481,3 +465,56 @@ def test_rename():
assert_series_equal(result, expected)

assert result.name == expected.name


def test_drop():
# unique
s = Series([1, 2], index=['one', 'two'])
expected = Series([1], index=['one'])
result = s.drop(['two'])
assert_series_equal(result, expected)
result = s.drop('two', axis='rows')
assert_series_equal(result, expected)

# non-unique
# GH 5248
s = Series([1, 1, 2], index=['one', 'two', 'one'])
expected = Series([1, 2], index=['one', 'one'])
result = s.drop(['two'], axis=0)
assert_series_equal(result, expected)
result = s.drop('two')
assert_series_equal(result, expected)

expected = Series([1], index=['two'])
result = s.drop(['one'])
assert_series_equal(result, expected)
result = s.drop('one')
assert_series_equal(result, expected)

# single string/tuple-like
s = Series(range(3), index=list('abc'))
pytest.raises(KeyError, s.drop, 'bc')
pytest.raises(KeyError, s.drop, ('a',))

# errors='ignore'
s = Series(range(3), index=list('abc'))
result = s.drop('bc', errors='ignore')
assert_series_equal(result, s)
result = s.drop(['a', 'd'], errors='ignore')
expected = s.iloc[1:]
assert_series_equal(result, expected)

# bad axis
pytest.raises(ValueError, s.drop, 'one', axis='columns')

# GH 8522
s = Series([2, 3], index=[True, False])
assert s.index.is_object()
result = s.drop(True)
expected = Series([3], index=[False])
assert_series_equal(result, expected)

# GH 16877
s = Series([2, 3], index=[0, 1])
with tm.assert_raises_regex(KeyError, 'not contained in axis'):
s.drop([False, True])
121 changes: 50 additions & 71 deletions pandas/tests/series/indexing/test_boolean.py
Original file line number Diff line number Diff line change
Expand Up @@ -283,34 +283,30 @@ def test_where_error():
[])


def test_where_array_like():
@pytest.mark.parametrize('klass', [list, tuple, np.array, Series])
def test_where_array_like(klass):
# see gh-15414
s = Series([1, 2, 3])
cond = [False, True, True]
expected = Series([np.nan, 2, 3])
klasses = [list, tuple, np.array, Series]

for klass in klasses:
result = s.where(klass(cond))
assert_series_equal(result, expected)
result = s.where(klass(cond))
assert_series_equal(result, expected)


def test_where_invalid_input():
@pytest.mark.parametrize('cond', [
[1, 0, 1],
Series([2, 5, 7]),
["True", "False", "True"],
[Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")]
])
def test_where_invalid_input(cond):
# see gh-15414: only boolean arrays accepted
s = Series([1, 2, 3])
msg = "Boolean array expected for the condition"

conds = [
[1, 0, 1],
Series([2, 5, 7]),
["True", "False", "True"],
[Timestamp("2017-01-01"),
pd.NaT, Timestamp("2017-01-02")]
]

for cond in conds:
with tm.assert_raises_regex(ValueError, msg):
s.where(cond)
with tm.assert_raises_regex(ValueError, msg):
s.where(cond)

msg = "Array conditional must be same shape as self"
with tm.assert_raises_regex(ValueError, msg):
Expand Down Expand Up @@ -403,37 +399,43 @@ def f():
assert_series_equal(s, expected)


def test_where_broadcast():
# Test a variety of differently sized series
for size in range(2, 6):
# Test a variety of boolean indices
for selection in [
# First element should be set
np.resize([True, False, False, False, False], size),
# Set alternating elements]
np.resize([True, False], size),
# No element should be set
np.resize([False], size)
]:

# Test a variety of different numbers as content
for item in [2.0, np.nan, np.finfo(np.float).max,
np.finfo(np.float).min]:
# Test numpy arrays, lists and tuples as the input to be
# broadcast
for arr in [np.array([item]), [item], (item,)]:
data = np.arange(size, dtype=float)
s = Series(data)
s[selection] = arr
# Construct the expected series by taking the source
# data or item based on the selection
expected = Series([item if use_item else data[
i] for i, use_item in enumerate(selection)])
assert_series_equal(s, expected)

s = Series(data)
result = s.where(~selection, arr)
assert_series_equal(result, expected)
@pytest.mark.parametrize('size', range(2, 6))
@pytest.mark.parametrize('mask', [
[True, False, False, False, False],
[True, False],
[False]
])
@pytest.mark.parametrize('item', [
2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min
])
# Test numpy arrays, lists and tuples as the input to be
# broadcast
@pytest.mark.parametrize('box', [
lambda x: np.array([x]),
lambda x: [x],
lambda x: (x,)
])
def test_broadcast(size, mask, item, box):
selection = np.resize(mask, size)

data = np.arange(size, dtype=float)

# Construct the expected series by taking the source
# data or item based on the selection
expected = Series([item if use_item else data[
i] for i, use_item in enumerate(selection)])

s = Series(data)
s[selection] = box(item)
assert_series_equal(s, expected)

s = Series(data)
result = s.where(~selection, box(item))
assert_series_equal(result, expected)

s = Series(data)
result = s.mask(selection, box(item))
assert_series_equal(result, expected)


def test_where_inplace():
Expand Down Expand Up @@ -587,29 +589,6 @@ def test_mask():
assert_series_equal(result, expected)


def test_mask_broadcast():
# GH 8801
# copied from test_where_broadcast
for size in range(2, 6):
for selection in [
# First element should be set
np.resize([True, False, False, False, False], size),
# Set alternating elements]
np.resize([True, False], size),
# No element should be set
np.resize([False], size)
]:
for item in [2.0, np.nan, np.finfo(np.float).max,
np.finfo(np.float).min]:
for arr in [np.array([item]), [item], (item,)]:
data = np.arange(size, dtype=float)
s = Series(data)
result = s.mask(selection, arr)
expected = Series([item if use_item else data[
i] for i, use_item in enumerate(selection)])
assert_series_equal(result, expected)


def test_mask_inplace():
s = Series(np.random.randn(5))
cond = s > 0
Expand Down
33 changes: 33 additions & 0 deletions pandas/tests/series/indexing/test_callable.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import pandas as pd
import pandas.util.testing as tm


def test_getitem_callable():
# GH 12533
s = pd.Series(4, index=list('ABCD'))
result = s[lambda x: 'A']
assert result == s.loc['A']

result = s[lambda x: ['A', 'B']]
tm.assert_series_equal(result, s.loc[['A', 'B']])

result = s[lambda x: [True, False, True, True]]
tm.assert_series_equal(result, s.iloc[[0, 2, 3]])


def test_setitem_callable():
# GH 12533
s = pd.Series([1, 2, 3, 4], index=list('ABCD'))
s[lambda x: 'A'] = -1
tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD')))


def test_setitem_other_callable():
# GH 13299
inc = lambda x: x + 1

s = pd.Series([1, 2, -1, 4])
s[s < 0] = inc

expected = pd.Series([1, 2, inc, 4])
tm.assert_series_equal(s, expected)
Loading