14
14
15
15
class Concat (object ):
16
16
17
- goal_time = 0.2
18
-
19
17
def setup (self ):
20
18
N = 10 ** 5
21
19
self .s = pd .Series (list ('aabbcd' ) * N ).astype ('category' )
@@ -32,8 +30,6 @@ def time_union(self):
32
30
33
31
class Constructor (object ):
34
32
35
- goal_time = 0.2
36
-
37
33
def setup (self ):
38
34
N = 10 ** 5
39
35
self .categories = list ('abcde' )
@@ -75,8 +71,6 @@ def time_from_codes_all_int8(self):
75
71
76
72
class ValueCounts (object ):
77
73
78
- goal_time = 0.2
79
-
80
74
params = [True , False ]
81
75
param_names = ['dropna' ]
82
76
@@ -91,8 +85,6 @@ def time_value_counts(self, dropna):
91
85
92
86
class Repr (object ):
93
87
94
- goal_time = 0.2
95
-
96
88
def setup (self ):
97
89
self .sel = pd .Series (['s1234' ]).astype ('category' )
98
90
@@ -102,8 +94,6 @@ def time_rendering(self):
102
94
103
95
class SetCategories (object ):
104
96
105
- goal_time = 0.2
106
-
107
97
def setup (self ):
108
98
n = 5 * 10 ** 5
109
99
arr = ['s%04d' % i for i in np .random .randint (0 , n // 10 , size = n )]
@@ -115,8 +105,6 @@ def time_set_categories(self):
115
105
116
106
class Rank (object ):
117
107
118
- goal_time = 0.2
119
-
120
108
def setup (self ):
121
109
N = 10 ** 5
122
110
ncats = 100
@@ -154,8 +142,6 @@ def time_rank_int_cat_ordered(self):
154
142
155
143
class Isin (object ):
156
144
157
- goal_time = 0.2
158
-
159
145
params = ['object' , 'int64' ]
160
146
param_names = ['dtype' ]
161
147
@@ -195,8 +181,6 @@ def time_categorical_series_is_monotonic_decreasing(self):
195
181
196
182
class Contains (object ):
197
183
198
- goal_time = 0.2
199
-
200
184
def setup (self ):
201
185
N = 10 ** 5
202
186
self .ci = tm .makeCategoricalIndex (N )
@@ -212,7 +196,6 @@ def time_categorical_contains(self):
212
196
213
197
class CategoricalSlicing (object ):
214
198
215
- goal_time = 0.2
216
199
params = ['monotonic_incr' , 'monotonic_decr' , 'non_monotonic' ]
217
200
param_names = ['index' ]
218
201
0 commit comments