Computer Vision Lectures & Learning from many University Courses
- CS231n - Stanford (EECS498 - Michigan)
- AI604 - KAIST
- Sign-in(login) to your AWS console
- Go to "Amazon SageMaker"
- Go to "Dashboard" and create your SageMaker domain
- Go to "Notebook" and create your Notebook instance (p3.2xlarge is good!)
- When the notebook instance is created, you can start JupyterLab!
- Launch your JupyterLab and open terminal
- Here is needed command lines!
sh-4.2$ source activate python3 (python3) sh-4.2$ pip install theano (python3) sh-4.2$ source deactivate (JupyterSystemEnv) sh-4.2$
- You can upload your data or .ipynb, .py files.
- It's located in "SageMaker" directory
sh-4.2$ cd [your directory] - You can create your own virtual conda environment and ipykernel
- If you have environment yml file,
(JupyterSystemEnv) sh-4.2$ conda env create -f [filename].yml
- Or create your own!
(JupyterSystemEnv) sh-4.2$ conda create -n [env_name] python=3.x
- Then you can create kernel spec
(JupyterSystemEnv) sh-4.2$ conda activate [virtualEnv] (virtualEnv) sh-4.2$ python -m ipykernel install --user --name [virtualEnv] --display-name "[displayKenrelName]"- You can check at .ipynb file "Kernel"!