-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconti_simulation.py
289 lines (246 loc) · 14.5 KB
/
conti_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
import sys
import argparse
import os
import matplotlib.pyplot as plt
import pandas as pd
import datetime
import tensorflow as tf
import random
from keras.callbacks import ModelCheckpoint
from keras.backend.tensorflow_backend import set_session
from keras import backend as K
from matplotlib.ticker import FormatStrFormatter
from matplotlib import ticker
from sklearn import linear_model
import src.pi_vae as pi_vae
import src.util as util
os.makedirs('./data/sim/', exist_ok=True)
os.environ['PYTHONHASHSEED'] = "0"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.05
sess = tf.Session(graph=tf.get_default_graph(), config=config)
set_session(sess)
parser = argparse.ArgumentParser()
parser.add_argument('--length', default=30000, type=int)
parser.add_argument('--n_dim', default=100, type=int)
parser.add_argument('--dim_z', default=2, type=int)
parser.add_argument('--seed_num_dataset_list', nargs="+", type=int)
parser.add_argument('--seed_size_opt', default=10, type=int)
parser.add_argument('--num_epoch', default=100, type=int)
parser.add_argument('--mdl', default='gaussian', type=str)
parser.add_argument('--latent_type', default='sine', type=str)
parser.add_argument('--gen_nodes', default='60', type=int)
parser.add_argument('--learning_rate', default=5e-4, type=float)
parser.add_argument('--n_hidden_nodes_in_prior', default=20, type=int)
parser.add_argument('--beta_1', default=0.9, type=float)
parser.add_argument('--noise_structure', default='gaussian', type=str)
parser.add_argument('--fix_alpha', default=None, type=float)
parser.add_argument('--M', default=20, type=int)
parser.add_argument('--alpha_step', default=0.05, type=float)
opt = parser.parse_args()
seed_num_dataset_list = opt.seed_num_dataset_list
for seed_num_dataset in seed_num_dataset_list:
length = opt.length;
n_dim = opt.n_dim
dim_z = opt.dim_z
seed_size_opt = opt.seed_size_opt
num_epoch = opt.num_epoch
mdl = opt.mdl
latent_type = opt.latent_type
gen_nodes = opt.gen_nodes
learning_rate = opt.learning_rate
n_hidden_nodes_in_prior = opt.n_hidden_nodes_in_prior
beta_1 = opt.beta_1
noise_structure = opt.noise_structure
fix_alpha = opt.fix_alpha
M = opt.M
alpha_step = opt.alpha_step
now = datetime.datetime.now()
if fix_alpha is not None:
result_folder_path = './results/fix_alpha=%.2f-length=%d-latent_type=%s-seed_num_dataset=%d-seed_size_opt=%d-%d-%d-%d-%d-%d' % (fix_alpha, length, latent_type, seed_num_dataset, seed_size_opt, now.month, now.day, now.hour, now.minute, now.second)
else:
result_folder_path = './results/sup_alpha-length=%d-latent_type=%s-seed_num_dataset=%d-seed_size_opt=%d-%d-%d-%d-%d-%d' % (length, latent_type, seed_num_dataset, seed_size_opt, now.month, now.day, now.hour, now.minute, now.second)
os.makedirs(result_folder_path)
sys.stdout=open(result_folder_path + "/log.txt", "w")
print(opt)
z_true, u_true, mean_true, lam_true, mu_true, var_true = pi_vae.simulate_cont_data_diff_var(length, n_dim, seed_num_dataset, latent_type);
if noise_structure == 'poisson':
x_true = np.random.poisson(lam_true);
elif noise_structure == 'gaussian':
x_true = np.random.normal(mean_true, 1.0, np.shape(mean_true))
if fix_alpha is not None:
np.savez('./data/sim/fix_alpha=%.2f-noise_structure=%s-mdl=%s-latent_type=%s-seed_num_dataset=%d-sim_100d_poisson_cont_label.npz' % (fix_alpha, noise_structure, mdl, latent_type, seed_num_dataset), u=u_true, z=z_true, x=x_true, lam=lam_true, mean=mean_true, mu=mu_true, var=var_true);
dat = np.load('./data/sim/fix_alpha=%.2f-noise_structure=%s-mdl=%s-latent_type=%s-seed_num_dataset=%d-sim_100d_poisson_cont_label.npz' % (fix_alpha, noise_structure, mdl, latent_type, seed_num_dataset));
else:
np.savez('./data/sim/sup_alpha-noise_structure=%s-mdl=%s-latent_type=%s-seed_num_dataset=%d-sim_100d_poisson_cont_label.npz' % (noise_structure, mdl, latent_type, seed_num_dataset), u=u_true, z=z_true, x=x_true, lam=lam_true, mean=mean_true, mu=mu_true, var=var_true);
dat = np.load('./data/sim/sup_alpha-noise_structure=%s-mdl=%s-latent_type=%s-seed_num_dataset=%d-sim_100d_poisson_cont_label.npz' % (noise_structure, mdl, latent_type, seed_num_dataset));
u_true = dat['u'];
z_true = dat['z'];
x_true = dat['x'];
mu_true = dat['mu']
var_true = dat['var']
batch_size = 300
train_prop, val_prop, test_prop = 0.8, 0.1, 0.1
num_batch_train, num_batch_val, num_batch_test = int(train_prop*length/batch_size), int(val_prop*length/batch_size), int(test_prop*length/batch_size)
x_all = x_true.reshape(int(length/batch_size), batch_size, -1);
z_all = z_true.reshape(int(length/batch_size), batch_size, -1);
u_all = u_true.reshape(int(length/batch_size), batch_size, -1)
x_train = x_all[:num_batch_train];
z_train = z_all[:num_batch_train];
u_train = u_all[:num_batch_train];
x_valid = x_all[num_batch_train:(num_batch_train+num_batch_val)];
z_valid = z_all[num_batch_train:(num_batch_train+num_batch_val)];
u_valid = u_all[num_batch_train:(num_batch_train+num_batch_val)];
x_test = x_all[(num_batch_train+num_batch_val):];
z_test = z_all[(num_batch_train+num_batch_val):];
u_test = u_all[(num_batch_train+num_batch_val):];
summary_stats = []
summary_stats_headings = ['seed_num_dataset', 'seed_num_opt', 'beta_kl_prior_post(original)', 'beta_kl_encoded_post(alt)', 'validation_loss', 'MSE_post', 'MSE_encoded', 'MSE_prior']
for seed_num_opt in range(seed_size_opt):
# For reproducibility
random.seed(seed_num_opt)
np.random.seed(seed_num_opt)
tf.set_random_seed(seed_num_opt)
tf.random.set_random_seed(seed_num_opt)
os.makedirs(result_folder_path+'/%d' % seed_num_opt)
model_chk_path = result_folder_path + '/%d/model.h5' % seed_num_opt
vae = pi_vae.vae_mdl(dim_x=x_all[0].shape[-1],
dim_z=dim_z,
dim_u=u_all[0].shape[-1],
gen_nodes=gen_nodes, n_blk=2,
mdl=mdl, disc=False,
learning_rate=learning_rate,
latent_type = latent_type,
beta_1 = beta_1,
fix_alpha = fix_alpha,
M = M,
n_hidden_nodes_in_prior = n_hidden_nodes_in_prior)
mcp = ModelCheckpoint(model_chk_path, monitor="val_loss", save_best_only=True, save_weights_only=True)
s_n = vae.fit_generator(pi_vae.custom_data_generator(x_train, z_train[:, :, :2], u_train),
steps_per_epoch=len(x_train), epochs=num_epoch,
verbose=1,
validation_data = pi_vae.custom_data_generator(x_valid, z_valid[:, :, :2], u_valid),
validation_steps = len(x_valid), callbacks=[mcp]);
plt.plot(s_n.history['val_loss'][:])
plt.title('Validation loss curve')
plt.savefig(result_folder_path+'/%d/validation_loss_curve.png' % seed_num_opt)
plt.clf()
plt.cla()
# visualize representations
outputs_valid = vae.predict_generator(pi_vae.custom_data_generator(x_valid, z_valid[:, :, :2], u_valid), steps = len(x_valid));
outputs = vae.predict_generator(pi_vae.custom_data_generator(x_test, z_test[:, :, :2], u_test), steps = len(x_test));
if mdl == 'gaussian':
post_mean_valid, post_log_var_valid, post_sample_valid, fire_rate_post_valid, lam_mean_valid, lam_log_var_valid, z_mean_valid, z_log_var_valid, obs_log_var_valid, z_sample_valid, fire_rate_z_valid, alpha_output_valid, fire_rate_gt_valid = outputs_valid
post_mean, post_log_var, post_sample, fire_rate_post, lam_mean, lam_log_var, z_mean, z_log_var, obs_log_var, z_sample, fire_rate_z, alpha_output, fire_rate_gt = outputs
elif mdl == 'poisson':
post_mean, post_log_var, post_sample, fire_rate_post, lam_mean, lam_log_var, z_mean, z_log_var, z_sample, fire_rate_z, alpha_output, fire_rate_gt = outputs
# plot representation: before affine transformation
length = 30;
c_vec = plt.cm.viridis(np.linspace(0,1,length))
bins = np.linspace(-0.5*np.pi, 0.5*np.pi, length);
centers = (bins[1:]+bins[:-1])/2;
disc_loc = np.digitize(u_true[:,0], centers);
c_all = c_vec[disc_loc];
fsz = 14;
n_train = np.shape(x_train)[0]*np.shape(x_train)[1]
n_valid = np.shape(x_valid)[0]*np.shape(x_valid)[1]
n_test = np.shape(x_test)[0]*np.shape(x_test)[1]
epsilon = np.random.normal(0, 1, size=np.shape(post_mean))
z_latents = [z_true[-n_test:, :2], post_mean+np.random.normal(0, 1, size=np.shape(post_mean))*np.exp(0.5*post_log_var),
z_mean+np.random.normal(0, 1, size=np.shape(post_mean))*np.exp(0.5*z_log_var),
lam_mean+np.random.normal(0, 1, size=np.shape(post_mean))*np.exp(0.5*lam_log_var)]
mu_latents = [mu_true[-n_test:], post_mean, z_mean, lam_mean]
var_latents = [var_true[-n_test:], post_log_var, z_log_var, lam_log_var]
reg_gt_to_prior = linear_model.Ridge(alpha=.0).fit(mu_true[n_train:(n_train+n_valid):], lam_mean_valid)
outputs = vae.predict_generator(pi_vae.custom_data_generator(x_test, reg_gt_to_prior.predict(z_true[-n_test:, :2]).reshape(int(n_test/batch_size), batch_size, -1), u_test), steps = len(x_test))
post_mean, post_log_var, post_sample, fire_rate_post, lam_mean, lam_log_var, z_mean, z_log_var, obs_log_var, z_sample, fire_rate_z, alpha_output, fire_rate_gt = outputs
plt.figure(figsize=(16,8));
plt.subplots_adjust(top=0.90)
i = 0
for latents in [z_latents, mu_latents]:
j = 0
for latent in latents:
ax = plt.subplot(2, len(latents), i*len(latents)+j+1)
plt.scatter(latent[:,0], latent[:,1], c=c_all[-n_test:], s=1, alpha=0.5);
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.setp(ax.get_xticklabels(), fontsize=fsz);
plt.setp(ax.get_yticklabels(), fontsize=fsz);
j += 1
i += 1
plt.suptitle('[(Before) GT - post(z|x,u) - encoded(z|x) - prior(z|u)]', y=0.98)
plt.savefig(result_folder_path+'/%d/vis_latent_before_affine_trans.png' % seed_num_opt)
plt.clf()
plt.cla()
# plot representation: after affine transformation
mse = []
plt.figure(figsize=(16,8));
plt.subplots_adjust(top=0.90)
reg = {}
reg['1'] = linear_model.Ridge(alpha=.0).fit(post_mean_valid, mu_true[n_train:(n_train+n_valid):])
reg['2'] = linear_model.Ridge(alpha=.0).fit(z_mean_valid, mu_true[n_train:(n_train+n_valid):])
reg['3'] = linear_model.Ridge(alpha=.0).fit(lam_mean_valid, mu_true[n_train:(n_train+n_valid):])
i = 0
for latents in [z_latents, mu_latents]:
j = 0
for latent in latents:
ax = plt.subplot(2, len(latents), i*len(latents)+j+1)
if j != 0:
latent_transformed = reg['%d' % j].predict(latent)
mse.append(np.mean(np.square(latent_transformed - latents[0][:, :2])))
plt.scatter(latent_transformed[:,0], latent_transformed[:,1], c=c_all[-n_test:], s=1, alpha=0.5);
else:
plt.scatter(latent[:,0], latent[:,1], c=c_all[-n_test:], s=1, alpha=0.5);
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.setp(ax.get_xticklabels(), fontsize=fsz);
plt.setp(ax.get_yticklabels(), fontsize=fsz);
j += 1
i += 1
mse_mu_post, mse_mu_encoded, mse_mu_prior = mse[3:6]
plt.suptitle('[(After) GT - post(z|x,u) - encoded(z|x) - prior(z|u)]', y=0.98)
plt.savefig(result_folder_path+'/%d/vis_latent_after_affine_trans.png' % seed_num_opt)
plt.clf()
plt.cla()
# calculate log density
x_input = np.reshape(x_test, (-1, x_all[0].shape[-1]))
if mdl == 'gaussian':
post_mean, post_log_var, post_sample, fire_rate_post, lam_mean, lam_log_var, z_mean, z_log_var, obs_log_var, z_sample, fire_rate_z, alpha_output, fire_rate_gt = outputs
obs_log_var = np.repeat(obs_log_var, batch_size, axis=0)
elif mdl == 'poisson':
post_mean, post_log_var, post_sample, fire_rate_post, lam_mean, lam_log_var, z_mean, z_log_var, z_sample, fire_rate_z, alpha_output, fire_rate_gt = outputs
epsilon = np.random.normal(size=(np.shape(lam_mean)[0], np.shape(lam_mean)[1], M))
lam_mean_tiled = np.repeat(np.expand_dims(lam_mean, axis=2), M, axis=2)
lam_log_var_tiled = np.repeat(np.expand_dims(lam_log_var, axis=2), M, axis=2)
lam_sample_tiled = lam_mean_tiled + np.exp(0.5 * lam_log_var_tiled) * epsilon
density = np.zeros(np.shape(lam_mean)[0])
for m in range(M):
_, mu_x_given_z = pi_vae.true_mapping_from_z_to_x(lam_sample_tiled[:, :, m], n_dim)
density += np.prod(np.exp(-0.5*(x_input - mu_x_given_z)**2), axis=1)
density /= M
log_density = np.mean(np.log(density))
current_row = {}
if fix_alpha is None:
current_row['method'] = 'CI-iVAE'
elif fix_alpha == 0.0:
current_row['method'] = 'iVAE'
elif fix_alpha == 1.0:
current_row['method'] = 'VAE with label prior'
current_row['seed_num_dataset'] = seed_num_dataset
current_row['seed_num_opt'] = seed_num_opt
current_row['latent_type'] = latent_type
current_row['validation_loss'] = np.min(s_n.history['val_loss'])
current_row['test_loss'] = vae.evaluate(pi_vae.custom_data_generator(x_test, z_test[:, :, :2], u_test), steps = len(x_test))
current_row['MSE_mu_post'] = mse_mu_post
current_row['MSE_mu_encoded'] = mse_mu_encoded
current_row['MSE_mu_prior'] = mse_mu_prior
current_row['log_density'] = log_density
current_row['fix_alpha'] = fix_alpha
current_row['noise_structure'] = noise_structure
summary_stats.append(current_row)
del(vae)
summary_stats = pd.DataFrame(summary_stats)
summary_stats.to_csv('%s/summary_stats.csv' % result_folder_path, index=False)
sys.stdout.close()