Skip to content

delete() & enhancements in BST #56

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Oct 8, 2019
120 changes: 110 additions & 10 deletions src/_DataStructures_/Trees/BST/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -82,29 +82,129 @@ class BinarySearchTree {
}
return false;
}

delete(root, value) {
if (root === null) {
return root;
}

if (value > root.value) {
// eslint-disable-next-line no-param-reassign
root.rightChild = this.delete(root.rightChild, value);
} else if (value < root.value) {
// eslint-disable-next-line no-param-reassign
root.leftChild = this.delete(root.leftChild, value);
} else {
// found the node
if (root.leftChild === null) {
// there is a right sub-tree
return root.rightChild;
}
if (root.rightChild === null) {
// there is a left sub-tree
return root.leftChild;
}
/**
* the root contain 2 childs, we got 2 options:
* 1. We can either find the Node with minimum value at from the right sub-tree
* 2. Or, we can find the Node with maximum value from the left sub-tree
*
* I'm picking up 1 here
*/
const minRightNode = this.findMinNode(root.rightChild);
// eslint-disable-next-line no-param-reassign
root.value = minRightNode.value;
// eslint-disable-next-line no-param-reassign
root.rightChild = this.delete(root.rightChild, minRightNode.value);
return root;
}
return root;
}

findMinNode(root) {
/** The minnimum values is the let most leaf node in BST */
if (root.leftChild === null) return root;
return this.findMinNode(root.leftChild);
}

findMaxNode(root) {
if (root.rightChild === null) return root;
return this.findMaxNode(root.rightChild);
}

isEmpty() {
return this.root === null;
}

/** Layered methods to simplify the BST API */

add(value) {
return this.insert(this.root, value);
}

traversePreorder() {
return this.preorder(this.root);
}

traversePostorder() {
return this.postorder(this.root);
}

traverseInorder() {
return this.inorder(this.root);
}

searchFor(value) {
return this.search(this.root, value);
}

getMinimum() {
const minNode = this.findMinNode(this.root);
return minNode.value;
}

getMaximum() {
const maxNode = this.findMaxNode(this.root);
return maxNode.value;
}

remove(value) {
return this.delete(this.root, value);
}
}

// const bst = new BinarySearchTree(6);
// console.log(bst.root);
// bst.insert(bst.root, 4);
// bst.insert(bst.root, 9);
// bst.insert(bst.root, 2);
// bst.insert(bst.root, 5);
// bst.insert(bst.root, 8);
// bst.insert(bst.root, 12);
// bst.add(4);
// bst.add(9);
// bst.add(2);
// bst.add(5);
// bst.add(8);
// bst.add(12);

// console.log(bst.root);

// const preorder = bst.preorder(bst.root);
// const preorder = bst.traversePreorder();
// console.log('Preorder Traversal - ', preorder);

// const inorder = bst.inorder(bst.root);
// const inorder = bst.traverseInorder();
// console.log('Inorder Traversal - ', inorder);

// const postorder = bst.postorder(bst.root);
// const postorder = bst.traversePostorder();
// console.log('Postorder Traversal - ', postorder);

// const search = 18;
// console.log(`Search for ${search}`, bst.search(bst.root, search));
// console.log(`Search for ${search}`, bst.searchFor(search));

// const minNode = bst.getMinimum();
// console.log('Minimum value =>', minNode);

// const maxNode = bst.getMaximum();
// console.log('Maximum value =>', maxNode);

// bst.remove(4);
// console.log(bst.traversePreorder());

// console.log(bst.root);

module.exports = BinarySearchTree;