Skip to content

Files

Latest commit

7840036 · Jul 24, 2024

History

History

2331.Evaluate Boolean Binary Tree

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 13, 2022
Jul 24, 2024
Jul 24, 2024
Jan 13, 2024
Jul 11, 2024
Jul 11, 2024
Jul 11, 2024
Jul 11, 2024
Jul 11, 2024
Jul 11, 2024
comments difficulty edit_url rating source tags
true
简单
1303
第 82 场双周赛 Q1
深度优先搜索
二叉树

English Version

题目描述

给你一棵 完整二叉树 的根,这棵树有以下特征:

  • 叶子节点 要么值为 0 要么值为 1 ,其中 0 表示 False ,1 表示 True 。
  • 非叶子节点 要么值为 2 要么值为 3 ,其中 2 表示逻辑或 OR3 表示逻辑与 AND 。

计算 一个节点的值方式如下:

  • 如果节点是个叶子节点,那么节点的  为它本身,即 True 或者 False 。
  • 否则,计算 两个孩子的节点值,然后将该节点的运算符对两个孩子值进行 运算 。

返回根节点 root 的布尔运算值。

完整二叉树 是每个节点有 0 个或者 2 个孩子的二叉树。

叶子节点 是没有孩子的节点。

 

示例 1:

输入:root = [2,1,3,null,null,0,1]
输出:true
解释:上图展示了计算过程。
AND 与运算节点的值为 False AND True = False 。
OR 运算节点的值为 True OR False = True 。
根节点的值为 True ,所以我们返回 true 。

示例 2:

输入:root = [0]
输出:false
解释:根节点是叶子节点,且值为 false,所以我们返回 false 。

 

提示:

  • 树中节点数目在 [1, 1000] 之间。
  • 0 <= Node.val <= 3
  • 每个节点的孩子数为 0 或 2 。
  • 叶子节点的值为 0 或 1 。
  • 非叶子节点的值为 2 或 3

解法

方法一:递归

我们可以使用递归的方式来求解本题。

对于当前节点 root

  • 如果其左孩子为空,说明当前节点是叶子节点。如果当前节点的值为 1 ,则返回 true ,否则返回 false
  • 如果当前节点的值为 2 ,则返回其左孩子和右孩子的递归结果的逻辑或,否则返回其左孩子和右孩子的递归结果的逻辑与。

时间复杂度 O ( n ) ,空间复杂度 O ( n ) 。其中 n 为二叉树的节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def evaluateTree(self, root: Optional[TreeNode]) -> bool:
        if root.left is None:
            return bool(root.val)
        op = or_ if root.val == 2 else and_
        return op(self.evaluateTree(root.left), self.evaluateTree(root.right))

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean evaluateTree(TreeNode root) {
        if (root.left == null) {
            return root.val == 1;
        }
        if (root.val == 2) {
            return evaluateTree(root.left) || evaluateTree(root.right);
        }
        return evaluateTree(root.left) && evaluateTree(root.right);
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool evaluateTree(TreeNode* root) {
        if (!root->left) {
            return root->val;
        }
        if (root->val == 2) {
            return evaluateTree(root->left) || evaluateTree(root->right);
        }
        return evaluateTree(root->left) && evaluateTree(root->right);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func evaluateTree(root *TreeNode) bool {
	if root.Left == nil {
		return root.Val == 1
	}
	if root.Val == 2 {
		return evaluateTree(root.Left) || evaluateTree(root.Right)
	} else {
		return evaluateTree(root.Left) && evaluateTree(root.Right)
	}
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function evaluateTree(root: TreeNode | null): boolean {
    const { val, left, right } = root;
    if (left === null) {
        return val === 1;
    }
    if (val === 2) {
        return evaluateTree(left) || evaluateTree(right);
    }
    return evaluateTree(left) && evaluateTree(right);
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;

impl Solution {
    pub fn evaluate_tree(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
        match root {
            Some(node) => {
                let node = node.borrow();
                if node.left.is_none() {
                    return node.val == 1;
                }
                if node.val == 2 {
                    return Self::evaluate_tree(node.left.clone())
                        || Self::evaluate_tree(node.right.clone());
                }
                Self::evaluate_tree(node.left.clone()) && Self::evaluate_tree(node.right.clone())
            }
            None => false,
        }
    }
}

C

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
bool evaluateTree(struct TreeNode* root) {
    if (!root->left) {
        return root->val == 1;
    }
    if (root->val == 2) {
        return evaluateTree(root->left) || evaluateTree(root->right);
    }
    return evaluateTree(root->left) && evaluateTree(root->right);
}