Skip to content

Files

Latest commit

79aba16 · Mar 9, 2024

History

History

0300.Longest Increasing Subsequence

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Mar 9, 2024
Feb 21, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Nov 9, 2023
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024
Jan 13, 2024

English Version

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7]子序列

 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

 

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

 

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

解法

方法一:动态规划

我们定义 f [ i ] 表示以 n u m s [ i ] 结尾的最长递增子序列的长度,初始时 f [ i ] = 1 ,答案为 f [ i ] 的最大值。

对于 f [ i ] ,我们需要枚举 0 j < i ,如果 n u m s [ j ] < n u m s [ i ] ,则 f [ i ] = max ( f [ i ] , f [ j ] + 1 )

最后的答案即为 f [ i ] 的最大值。

时间复杂度 O ( n 2 ) ,空间复杂度 O ( n ) 。其中 n 为数组长度。

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        n = len(nums)
        f = [1] * n
        for i in range(1, n):
            for j in range(i):
                if nums[j] < nums[i]:
                    f[i] = max(f[i], f[j] + 1)
        return max(f)
class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        Arrays.fill(f, 1);
        int ans = 1;
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    f[i] = Math.max(f[i], f[j] + 1);
                }
            }
            ans = Math.max(ans, f[i]);
        }
        return ans;
    }
}
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        vector<int> f(n, 1);
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    f[i] = max(f[i], f[j] + 1);
                }
            }
        }
        return *max_element(f.begin(), f.end());
    }
};
func lengthOfLIS(nums []int) int {
	n := len(nums)
	f := make([]int, n)
	for i := range f {
		f[i] = 1
	}
	ans := 1
	for i := 1; i < n; i++ {
		for j := 0; j < i; j++ {
			if nums[j] < nums[i] {
				f[i] = max(f[i], f[j]+1)
				ans = max(ans, f[i])
			}
		}
	}
	return ans
}
function lengthOfLIS(nums: number[]): number {
    const n = nums.length;
    const f: number[] = new Array(n).fill(1);
    for (let i = 1; i < n; ++i) {
        for (let j = 0; j < i; ++j) {
            if (nums[j] < nums[i]) {
                f[i] = Math.max(f[i], f[j] + 1);
            }
        }
    }
    return Math.max(...f);
}
impl Solution {
    pub fn length_of_lis(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let mut f = vec![1; n];
        for i in 1..n {
            for j in 0..i {
                if nums[j] < nums[i] {
                    f[i] = f[i].max(f[j] + 1);
                }
            }
        }
        *f.iter().max().unwrap()
    }
}

方法二:离散化 + 树状数组

我们将数组中的元素离散化,然后使用树状数组维护不大于某个元素的最长递增子序列的长度。

遍历数组中的每个元素 x ,将其离散化,然后在树状数组中查找不大于 x 1 的最长递增子序列的长度 t ,则 x 的最长递增子序列的长度为 t + 1 ,更新答案,并且更新树状数组中 x 的最长递增子序列的长度。

遍历完数组中的所有元素,即可得到答案。

时间复杂度 O ( n × log n ) ,空间复杂度 O ( n ) 。其中 n 为数组长度。

class BinaryIndexedTree:
    def __init__(self, n: int):
        self.n = n
        self.c = [0] * (n + 1)

    def update(self, x: int, v: int):
        while x <= self.n:
            self.c[x] = max(self.c[x], v)
            x += x & -x

    def query(self, x: int) -> int:
        mx = 0
        while x:
            mx = max(mx, self.c[x])
            x -= x & -x
        return mx


class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        s = sorted(set(nums))
        m = len(s)
        tree = BinaryIndexedTree(m)
        for x in nums:
            x = bisect_left(s, x) + 1
            t = tree.query(x - 1) + 1
            tree.update(x, t)
        return tree.query(m)
class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] s = nums.clone();
        Arrays.sort(s);
        int m = 0;
        int n = s.length;
        for (int i = 0; i < n; ++i) {
            if (i == 0 || s[i] != s[i - 1]) {
                s[m++] = s[i];
            }
        }
        BinaryIndexedTree tree = new BinaryIndexedTree(m);
        for (int x : nums) {
            x = search(s, x, m);
            int t = tree.query(x - 1) + 1;
            tree.update(x, t);
        }
        return tree.query(m);
    }

    private int search(int[] nums, int x, int r) {
        int l = 0;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l + 1;
    }
}

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int v) {
        while (x <= n) {
            c[x] = Math.max(c[x], v);
            x += x & -x;
        }
    }

    public int query(int x) {
        int mx = 0;
        while (x > 0) {
            mx = Math.max(mx, c[x]);
            x -= x & -x;
        }
        return mx;
    }
}
class BinaryIndexedTree {
public:
    BinaryIndexedTree(int _n)
        : n(_n)
        , c(_n + 1) {}

    void update(int x, int v) {
        while (x <= n) {
            c[x] = max(c[x], v);
            x += x & -x;
        }
    }

    int query(int x) {
        int mx = 0;
        while (x) {
            mx = max(mx, c[x]);
            x -= x & -x;
        }
        return mx;
    }

private:
    int n;
    vector<int> c;
};

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> s = nums;
        sort(s.begin(), s.end());
        s.erase(unique(s.begin(), s.end()), s.end());
        BinaryIndexedTree tree(s.size());
        for (int x : nums) {
            x = lower_bound(s.begin(), s.end(), x) - s.begin() + 1;
            int t = tree.query(x - 1) + 1;
            tree.update(x, t);
        }
        return tree.query(s.size());
    }
};
type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	return &BinaryIndexedTree{n, make([]int, n+1)}
}

func (bit *BinaryIndexedTree) update(x, v int) {
	for x <= bit.n {
		bit.c[x] = max(bit.c[x], v)
		x += x & -x
	}
}

func (bit *BinaryIndexedTree) query(x int) int {
	mx := 0
	for x > 0 {
		mx = max(mx, bit.c[x])
		x -= x & -x
	}
	return mx
}

func lengthOfLIS(nums []int) int {
	n := len(nums)
	s := make([]int, n)
	copy(s, nums)
	sort.Ints(s)
	m := 0
	for i, x := range s {
		if i == 0 || x != s[i-1] {
			s[m] = x
			m++
		}
	}
	tree := newBinaryIndexedTree(m)
	for _, x := range nums {
		x = sort.SearchInts(s[:m], x) + 1
		t := tree.query(x-1) + 1
		tree.update(x, t)
	}
	return tree.query(m)
}
class BinaryIndexedTree {
    private n: number;
    private c: number[];

    constructor(n: number) {
        this.n = n;
        this.c = new Array(n + 1).fill(0);
    }

    update(x: number, v: number) {
        while (x <= this.n) {
            this.c[x] = Math.max(this.c[x], v);
            x += x & -x;
        }
    }

    query(x: number): number {
        let mx = 0;
        while (x) {
            mx = Math.max(mx, this.c[x]);
            x -= x & -x;
        }
        return mx;
    }
}

function lengthOfLIS(nums: number[]): number {
    const s = [...new Set(nums)].sort((a, b) => a - b);
    const m = s.length;
    const tree = new BinaryIndexedTree(m);
    for (let x of nums) {
        x = search(s, x);
        const t = tree.query(x - 1) + 1;
        tree.update(x, t);
    }
    return tree.query(m);
}

function search(nums: number[], x: number): number {
    let l = 0,
        r = nums.length - 1;
    while (l < r) {
        const mid = (l + r) >> 1;
        if (nums[mid] >= x) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l + 1;
}