Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,6 @@ $$

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 是数组的长度。

我们注意到,状态 $f[i][j]$ 只与 $f[i-1][j]$ 和 $f[i-1][j-1]$ 有关,因此我们可以优化掉第一维,将空间复杂度降低到 $O(n)$。

<!-- tabs:start -->

```python
Expand Down Expand Up @@ -238,7 +236,7 @@ function minimumTime(nums1: number[], nums2: number[], x: number): number {

<!-- tabs:end -->

### 方法二
我们注意到,状态 $f[i][j]$ 只与 $f[i-1][j]$ 和 $f[i-1][j-1]$ 有关,因此我们可以优化掉第一维,将空间复杂度降低到 $O(n)$。

<!-- tabs:start -->

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,6 @@ Finally, we enumerate $j$ and find the smallest $j$ that satisfies $s_1 + s_2 \t

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$, where $n$ is the length of the array.

We notice that the state $f[i][j]$ is only related to $f[i-1][j]$ and $f[i-1][j-1]$, so we can optimize the first dimension and reduce the space complexity to $O(n)$.

<!-- tabs:start -->

```python
Expand Down Expand Up @@ -235,7 +233,7 @@ function minimumTime(nums1: number[], nums2: number[], x: number): number {

<!-- tabs:end -->

### Solution 2
We notice that the state $f[i][j]$ is only related to $f[i-1][j]$ and $f[i-1][j-1]$, so we can optimize the first dimension and reduce the space complexity to $O(n)$.

<!-- tabs:start -->

Expand Down