Skip to content

feat: add solutions to lc problem: No.2930 #1969

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -53,34 +53,305 @@

<!-- 这里可写通用的实现逻辑 -->

**方法一:记忆化搜索**

我们设计一个函数 $dfs(i, l, e, t)$,表示当前剩余字符串长度为 $i$,且已至少有 $l$ 个字符 `'l'`, $e$ 个字符 `'e'` 和 $t$ 个字符 `'t'`,构成的字符串是一个好字符串的方案数。那么答案为 $dfs(n, 0, 0, 0)$。

函数 $dfs(i, l, e, t)$ 的执行逻辑如下:

如果 $i = 0$,说明当前字符串已经构造完毕,如果 $l = 1$, $e = 2$ 且 $t = 1$,说明当前字符串是一个好字符串,返回 $1$,否则返回 $0$。

否则,我们可以考虑在当前位置添加除 `'l'`, `'e'`, `'t'` 以外的任意一个小写字母,一共有 $23$ 种,那么此时得到的方案数为 $dfs(i - 1, l, e, t) \times 23$。

我们也可以考虑在当前位置添加 `'l'`,此时得到的方案数为 $dfs(i - 1, \min(1, l + 1), e, t)$。同理,添加 `'e'` 和 `'t'` 的方案数分别为 $dfs(i - 1, l, \min(2, e + 1), t)$ 和 $dfs(i - 1, l, e, \min(1, t + 1))$。累加起来,并对 $10^9 + 7$ 取模,即可得到 $dfs(i, l, e, t)$ 的值。

为了避免重复计算,我们可以使用记忆化搜索。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为字符串长度。

**方法二:逆向思维 + 容斥原理**

我们可以考虑逆向思维,即计算不包含子字符串 `"leet"` 的字符串数目,然后用总数减去该数目即可。

我们分成以下几种情况:

- 情况 $a$:表示字符串中不包含字符 `'l'` 的方案数,那么有 $a = 25^n$。
- 情况 $b$:与 $a$ 类似,表示字符串中不包含字符 `'t'` 的方案数,那么有 $b = 25^n$。
- 情况 $c$:表示字符串中不包含字符 `'e'` 或者只包含一个字符 `'e'` 的方案数,那么有 $c = 25^n + n \times 25^{n - 1}$。
- 情况 $ab$:表示字符串中不包含字符 `'l'` 和 `'t'` 的方案数,那么有 $ab = 24^n$。
- 情况 $ac$:表示字符串中不包含字符 `'l'` 和 `'e'` 或者只包含一个字符 `'e'` 的方案数,那么有 $ac = 24^n + n \times 24^{n - 1}$。
- 情况 $bc$:与 $ac$ 类似,表示字符串中不包含字符 `'t'` 和 `'e'` 或者只包含一个字符 `'e'` 的方案数,那么有 $bc = 24^n + n \times 24^{n - 1}$。
- 情况 $abc$:表示字符串中不包含字符 `'l'`、`'t'` 和 `'e'` 或者只包含一个字符 `'e'` 的方案数,那么有 $abc = 23^n + n \times 23^{n - 1}$。

那么根据容斥原理,可以得到 $a + b + c - ab - ac - bc + abc$,就是不包含子字符串 `"leet"` 的字符串数目。

而总数 $tot = 26^n$,所以答案为 $tot - (a + b + c - ab - ac - bc + abc)$,注意要对 $10^9 + 7$ 取模。

时间复杂度 $O(\log n)$,其中 $n$ 为字符串长度。空间复杂度 $O(1)$。

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python
class Solution:
def stringCount(self, n: int) -> int:
@cache
def dfs(i: int, l: int, e: int, t: int) -> int:
if i == 0:
return int(l == 1 and e == 2 and t == 1)
a = dfs(i - 1, l, e, t) * 23 % mod
b = dfs(i - 1, min(1, l + 1), e, t)
c = dfs(i - 1, l, min(2, e + 1), t)
d = dfs(i - 1, l, e, min(1, t + 1))
return (a + b + c + d) % mod

mod = 10**9 + 7
return dfs(n, 0, 0, 0)
```

```python
class Solution:
def stringCount(self, n: int) -> int:
mod = 10**9 + 7
a = b = pow(25, n, mod)
c = pow(25, n, mod) + n * pow(25, n - 1, mod)
ab = pow(24, n, mod)
ac = bc = (pow(24, n, mod) + n * pow(24, n - 1, mod)) % mod
abc = (pow(23, n, mod) + n * pow(23, n - 1, mod)) % mod
tot = pow(26, n, mod)
return (tot - (a + b + c - ab - ac - bc + abc)) % mod
```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java
class Solution {
private final int mod = (int) 1e9 + 7;
private Long[][][][] f;

public int stringCount(int n) {
f = new Long[n + 1][2][3][2];
return (int) dfs(n, 0, 0, 0);
}

private long dfs(int i, int l, int e, int t) {
if (i == 0) {
return l == 1 && e == 2 && t == 1 ? 1 : 0;
}
if (f[i][l][e][t] != null) {
return f[i][l][e][t];
}
long a = dfs(i - 1, l, e, t) * 23 % mod;
long b = dfs(i - 1, Math.min(1, l + 1), e, t);
long c = dfs(i - 1, l, Math.min(2, e + 1), t);
long d = dfs(i - 1, l, e, Math.min(1, t + 1));
return f[i][l][e][t] = (a + b + c + d) % mod;
}
}
```

```java
class Solution {
private final int mod = (int) 1e9 + 7;

public int stringCount(int n) {
long a = qpow(25, n);
long b = a;
long c = (qpow(25, n) + n * qpow(25, n - 1) % mod) % mod;
long ab = qpow(24, n);
long ac = (qpow(24, n) + n * qpow(24, n - 1) % mod) % mod;
long bc = ac;
long abc = (qpow(23, n) + n * qpow(23, n - 1) % mod) % mod;
long tot = qpow(26, n);
return (int) ((tot - (a + b + c - ab - ac - bc + abc)) % mod + mod) % mod;
}

private long qpow(long a, int n) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
}
}
```

### **C++**

```cpp
class Solution {
public:
int stringCount(int n) {
const int mod = 1e9 + 7;
using ll = long long;
ll f[n + 1][2][3][2];
memset(f, -1, sizeof(f));
function<ll(int, int, int, int)> dfs = [&](int i, int l, int e, int t) -> ll {
if (i == 0) {
return l == 1 && e == 2 && t == 1 ? 1 : 0;
}
if (f[i][l][e][t] != -1) {
return f[i][l][e][t];
}
ll a = dfs(i - 1, l, e, t) * 23 % mod;
ll b = dfs(i - 1, min(1, l + 1), e, t) % mod;
ll c = dfs(i - 1, l, min(2, e + 1), t) % mod;
ll d = dfs(i - 1, l, e, min(1, t + 1)) % mod;
return f[i][l][e][t] = (a + b + c + d) % mod;
};
return dfs(n, 0, 0, 0);
}
};
```

```cpp
class Solution {
public:
int stringCount(int n) {
const int mod = 1e9 + 7;
using ll = long long;
auto qpow = [&](ll a, int n) {
ll ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
};
ll a = qpow(25, n);
ll b = a;
ll c = (qpow(25, n) + n * qpow(25, n - 1) % mod) % mod;
ll ab = qpow(24, n);
ll ac = (qpow(24, n) + n * qpow(24, n - 1) % mod) % mod;
ll bc = ac;
ll abc = (qpow(23, n) + n * qpow(23, n - 1) % mod) % mod;
ll tot = qpow(26, n);
return ((tot - (a + b + c - ab - ac - bc + abc)) % mod + mod) % mod;
}
};
```

### **Go**

```go
func stringCount(n int) int {
const mod int = 1e9 + 7
f := make([][2][3][2]int, n+1)
for i := range f {
for j := range f[i] {
for k := range f[i][j] {
for l := range f[i][j][k] {
f[i][j][k][l] = -1
}
}
}
}
var dfs func(i, l, e, t int) int
dfs = func(i, l, e, t int) int {
if i == 0 {
if l == 1 && e == 2 && t == 1 {
return 1
}
return 0
}
if f[i][l][e][t] == -1 {
a := dfs(i-1, l, e, t) * 23 % mod
b := dfs(i-1, min(1, l+1), e, t)
c := dfs(i-1, l, min(2, e+1), t)
d := dfs(i-1, l, e, min(1, t+1))
f[i][l][e][t] = (a + b + c + d) % mod
}
return f[i][l][e][t]
}
return dfs(n, 0, 0, 0)
}
```

```go
func stringCount(n int) int {
const mod int = 1e9 + 7
qpow := func(a, n int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
a := qpow(25, n)
b := a
c := qpow(25, n) + n*qpow(25, n-1)
ab := qpow(24, n)
ac := (qpow(24, n) + n*qpow(24, n-1)) % mod
bc := ac
abc := (qpow(23, n) + n*qpow(23, n-1)) % mod
tot := qpow(26, n)
return ((tot-(a+b+c-ab-ac-bc+abc))%mod + mod) % mod
}
```

### **TypeScript**

```ts
function stringCount(n: number): number {
const mod = 10 ** 9 + 7;
const f: number[][][][] = Array.from({ length: n + 1 }, () =>
Array.from({ length: 2 }, () =>
Array.from({ length: 3 }, () => Array.from({ length: 2 }, () => -1)),
),
);
const dfs = (i: number, l: number, e: number, t: number): number => {
if (i === 0) {
return l === 1 && e === 2 && t === 1 ? 1 : 0;
}
if (f[i][l][e][t] !== -1) {
return f[i][l][e][t];
}
const a = (dfs(i - 1, l, e, t) * 23) % mod;
const b = dfs(i - 1, Math.min(1, l + 1), e, t);
const c = dfs(i - 1, l, Math.min(2, e + 1), t);
const d = dfs(i - 1, l, e, Math.min(1, t + 1));
return (f[i][l][e][t] = (a + b + c + d) % mod);
};
return dfs(n, 0, 0, 0);
}
```

```ts
function stringCount(n: number): number {
const mod = BigInt(10 ** 9 + 7);
const qpow = (a: bigint, n: number): bigint => {
let ans = 1n;
for (; n; n >>>= 1) {
if (n & 1) {
ans = (ans * a) % mod;
}
a = (a * a) % mod;
}
return ans;
};
const a = qpow(25n, n);
const b = a;
const c = (qpow(25n, n) + ((BigInt(n) * qpow(25n, n - 1)) % mod)) % mod;
const ab = qpow(24n, n);
const ac = (qpow(24n, n) + ((BigInt(n) * qpow(24n, n - 1)) % mod)) % mod;
const bc = ac;
const abc = (qpow(23n, n) + ((BigInt(n) * qpow(23n, n - 1)) % mod)) % mod;
const tot = qpow(26n, n);
return Number((((tot - (a + b + c - ab - ac - bc + abc)) % mod) + mod) % mod);
}
```

### **...**
Expand Down
Loading