|
55 | 55 |
|
56 | 56 | <!-- 这里可写通用的实现逻辑 -->
|
57 | 57 |
|
| 58 | +**方法一:递归回溯 + 状态压缩** |
| 59 | + |
| 60 | +我们可以按位置进行递归回溯。如果当前位置 $(i, j)$ 已经被填充,则直接递归到下一个位置 $(i, j + 1)$。否则,我们枚举当前位置 $(i, j)$ 可以填充的最大正方形的边长 $w$,并将当前位置 $(i, j)$ 到 $(i + w - 1, j + w - 1)$ 的位置全部填充,然后递归到下一个位置 $(i, j + w)$。在回溯时,我们需要将当前位置 $(i, j)$ 到 $(i + w - 1, j + w - 1)$ 的位置全部清空。 |
| 61 | + |
| 62 | +由于每个位置只有两种状态:填充或者未填充,因此我们可以使用一个整数来表示当前位置的状态。我们使用一个长度为 $n$ 的整数数组 `filled`,其中 `filled[i]` 表示第 $i$ 行的状态。如果 `filled[i]` 的第 $j$ 位为 $1$,则表示第 $i$ 行第 $j$ 列已经被填充,否则表示未填充。 |
| 63 | + |
58 | 64 | <!-- tabs:start -->
|
59 | 65 |
|
60 | 66 | ### **Python3**
|
61 | 67 |
|
62 | 68 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
63 | 69 |
|
64 | 70 | ```python
|
65 |
| - |
| 71 | +class Solution: |
| 72 | + def tilingRectangle(self, n: int, m: int) -> int: |
| 73 | + def dfs(i, j, t): |
| 74 | + nonlocal ans |
| 75 | + if j == m: |
| 76 | + i += 1 |
| 77 | + j = 0 |
| 78 | + if i == n: |
| 79 | + ans = t |
| 80 | + return |
| 81 | + if filled[i] >> j & 1: |
| 82 | + dfs(i, j + 1, t) |
| 83 | + elif t + 1 < ans: |
| 84 | + r = c = 0 |
| 85 | + for k in range(i, n): |
| 86 | + if filled[k] >> j & 1: |
| 87 | + break |
| 88 | + r += 1 |
| 89 | + for k in range(j, m): |
| 90 | + if filled[i] >> k & 1: |
| 91 | + break |
| 92 | + c += 1 |
| 93 | + mx = r if r < c else c |
| 94 | + for w in range(1, mx + 1): |
| 95 | + for k in range(w): |
| 96 | + filled[i + w - 1] |= 1 << (j + k) |
| 97 | + filled[i + k] |= 1 << (j + w - 1) |
| 98 | + dfs(i, j + w, t + 1) |
| 99 | + for x in range(i, i + mx): |
| 100 | + for y in range(j, j + mx): |
| 101 | + filled[x] ^= 1 << y |
| 102 | + |
| 103 | + ans = n * m |
| 104 | + filled = [0] * n |
| 105 | + dfs(0, 0, 0) |
| 106 | + return ans |
66 | 107 | ```
|
67 | 108 |
|
68 | 109 | ### **Java**
|
69 | 110 |
|
70 | 111 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
71 | 112 |
|
72 | 113 | ```java
|
| 114 | +class Solution { |
| 115 | + private int n; |
| 116 | + private int m; |
| 117 | + private int[] filled; |
| 118 | + private int ans; |
| 119 | + |
| 120 | + public int tilingRectangle(int n, int m) { |
| 121 | + this.n = n; |
| 122 | + this.m = m; |
| 123 | + ans = n * m; |
| 124 | + filled = new int[n]; |
| 125 | + dfs(0, 0, 0); |
| 126 | + return ans; |
| 127 | + } |
| 128 | + |
| 129 | + private void dfs(int i, int j, int t) { |
| 130 | + if (j == m) { |
| 131 | + ++i; |
| 132 | + j = 0; |
| 133 | + } |
| 134 | + if (i == n) { |
| 135 | + ans = t; |
| 136 | + return; |
| 137 | + } |
| 138 | + if ((filled[i] >> j & 1) == 1) { |
| 139 | + dfs(i, j + 1, t); |
| 140 | + } else if (t + 1 < ans) { |
| 141 | + int r = 0, c = 0; |
| 142 | + for (int k = i; k < n; ++k) { |
| 143 | + if ((filled[k] >> j & 1) == 1) { |
| 144 | + break; |
| 145 | + } |
| 146 | + ++r; |
| 147 | + } |
| 148 | + for (int k = j; k < m; ++k) { |
| 149 | + if ((filled[i] >> k & 1) == 1) { |
| 150 | + break; |
| 151 | + } |
| 152 | + ++c; |
| 153 | + } |
| 154 | + int mx = Math.min(r, c); |
| 155 | + for (int w = 1; w <= mx; ++w) { |
| 156 | + for (int k = 0; k < w; ++k) { |
| 157 | + filled[i + w - 1] |= 1 << (j + k); |
| 158 | + filled[i + k] |= 1 << (j + w - 1); |
| 159 | + } |
| 160 | + dfs(i, j + w, t + 1); |
| 161 | + } |
| 162 | + for (int x = i; x < i + mx; ++x) { |
| 163 | + for (int y = j; y < j + mx; ++y) { |
| 164 | + filled[x] ^= 1 << y; |
| 165 | + } |
| 166 | + } |
| 167 | + } |
| 168 | + } |
| 169 | +} |
| 170 | +``` |
| 171 | + |
| 172 | +### **C++** |
| 173 | + |
| 174 | +```cpp |
| 175 | +class Solution { |
| 176 | +public: |
| 177 | + int tilingRectangle(int n, int m) { |
| 178 | + memset(filled, 0, sizeof(filled)); |
| 179 | + this->n = n; |
| 180 | + this->m = m; |
| 181 | + ans = n * m; |
| 182 | + dfs(0, 0, 0); |
| 183 | + return ans; |
| 184 | + } |
| 185 | + |
| 186 | +private: |
| 187 | + int filled[13]; |
| 188 | + int n, m; |
| 189 | + int ans; |
| 190 | + |
| 191 | + void dfs(int i, int j, int t) { |
| 192 | + if (j == m) { |
| 193 | + ++i; |
| 194 | + j = 0; |
| 195 | + } |
| 196 | + if (i == n) { |
| 197 | + ans = t; |
| 198 | + return; |
| 199 | + } |
| 200 | + if (filled[i] >> j & 1) { |
| 201 | + dfs(i, j + 1, t); |
| 202 | + } else if (t + 1 < ans) { |
| 203 | + int r = 0, c = 0; |
| 204 | + for (int k = i; k < n; ++k) { |
| 205 | + if (filled[k] >> j & 1) { |
| 206 | + break; |
| 207 | + } |
| 208 | + ++r; |
| 209 | + } |
| 210 | + for (int k = j; k < m; ++k) { |
| 211 | + if (filled[i] >> k & 1) { |
| 212 | + break; |
| 213 | + } |
| 214 | + ++c; |
| 215 | + } |
| 216 | + int mx = min(r, c); |
| 217 | + for (int w = 1; w <= mx; ++w) { |
| 218 | + for (int k = 0; k < w; ++k) { |
| 219 | + filled[i + w - 1] |= 1 << (j + k); |
| 220 | + filled[i + k] |= 1 << (j + w - 1); |
| 221 | + } |
| 222 | + dfs(i, j + w, t + 1); |
| 223 | + } |
| 224 | + for (int x = i; x < i + mx; ++x) { |
| 225 | + for (int y = j; y < j + mx; ++y) { |
| 226 | + filled[x] ^= 1 << y; |
| 227 | + } |
| 228 | + } |
| 229 | + } |
| 230 | + } |
| 231 | +}; |
| 232 | +``` |
73 | 233 |
|
| 234 | +### **Go** |
| 235 | + |
| 236 | +```go |
| 237 | +func tilingRectangle(n int, m int) int { |
| 238 | + ans := n * m |
| 239 | + filled := make([]int, n) |
| 240 | + var dfs func(i, j, t int) |
| 241 | + dfs = func(i, j, t int) { |
| 242 | + if j == m { |
| 243 | + i++ |
| 244 | + j = 0 |
| 245 | + } |
| 246 | + if i == n { |
| 247 | + ans = t |
| 248 | + return |
| 249 | + } |
| 250 | + if filled[i]>>j&1 == 1 { |
| 251 | + dfs(i, j+1, t) |
| 252 | + } else if t+1 < ans { |
| 253 | + var r, c int |
| 254 | + for k := i; k < n; k++ { |
| 255 | + if filled[k]>>j&1 == 1 { |
| 256 | + break |
| 257 | + } |
| 258 | + r++ |
| 259 | + } |
| 260 | + for k := j; k < m; k++ { |
| 261 | + if filled[i]>>k&1 == 1 { |
| 262 | + break |
| 263 | + } |
| 264 | + c++ |
| 265 | + } |
| 266 | + mx := min(r, c) |
| 267 | + for w := 1; w <= mx; w++ { |
| 268 | + for k := 0; k < w; k++ { |
| 269 | + filled[i+w-1] |= 1 << (j + k) |
| 270 | + filled[i+k] |= 1 << (j + w - 1) |
| 271 | + } |
| 272 | + dfs(i, j+w, t+1) |
| 273 | + } |
| 274 | + for x := i; x < i+mx; x++ { |
| 275 | + for y := j; y < j+mx; y++ { |
| 276 | + filled[x] ^= 1 << y |
| 277 | + } |
| 278 | + } |
| 279 | + } |
| 280 | + } |
| 281 | + dfs(0, 0, 0) |
| 282 | + return ans |
| 283 | +} |
| 284 | + |
| 285 | +func min(a, b int) int { |
| 286 | + if a < b { |
| 287 | + return a |
| 288 | + } |
| 289 | + return b |
| 290 | +} |
74 | 291 | ```
|
75 | 292 |
|
76 | 293 | ### **...**
|
|
0 commit comments