|
50 | 50 |
|
51 | 51 | <!-- 这里可写通用的实现逻辑 -->
|
52 | 52 |
|
| 53 | +**方法一:动态规划** |
| 54 | + |
| 55 | +我们定义 $f[i][j]$ 表示听 $i$ 首歌,且这 $i$ 首歌中有 $j$ 首不同歌曲的播放列表的数量。初始时 $f[0][0]=1$。答案为 $f[goal][n]$。 |
| 56 | + |
| 57 | +对于 $f[i][j]$,我们可以选择没听过的歌,那么上一个状态为 $f[i - 1][j - 1]$,这样的选择有 $n - (j - 1) = n - j + 1$ 种,因此 $f[i][j] += f[i - 1][j - 1] \times (n - j + 1)$。我们也可以选择听过的歌,那么上一个状态为 $f[i - 1][j]$,这样的选择有 $j - k$ 种,因此 $f[i][j] += f[i - 1][j] \times (j - k)$,其中 $j \geq k$。 |
| 58 | + |
| 59 | +综上,我们可以得到状态转移方程: |
| 60 | + |
| 61 | +$$ |
| 62 | +f[i][j] = \begin{cases} |
| 63 | +1 & i = 0, j = 0 \\ |
| 64 | +f[i - 1][j - 1] \times (n - j + 1) + f[i - 1][j] \times (j - k) & i \geq 1, j \geq 1 |
| 65 | +\end{cases} |
| 66 | +$$ |
| 67 | + |
| 68 | +最终的答案为 $f[goal][n]$。 |
| 69 | + |
| 70 | +时间复杂度 $O(goal \times n)$,空间复杂度 $O(goal \times n)$。其中 $goal$ 和 $n$ 为题目中给定的参数。 |
| 71 | + |
53 | 72 | <!-- tabs:start -->
|
54 | 73 |
|
55 | 74 | ### **Python3**
|
56 | 75 |
|
57 | 76 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
58 | 77 |
|
59 | 78 | ```python
|
60 |
| - |
| 79 | +class Solution: |
| 80 | + def numMusicPlaylists(self, n: int, goal: int, k: int) -> int: |
| 81 | + mod = 10**9 + 7 |
| 82 | + f = [[0] * (n + 1) for _ in range(goal + 1)] |
| 83 | + f[0][0] = 1 |
| 84 | + for i in range(1, goal + 1): |
| 85 | + for j in range(1, n + 1): |
| 86 | + f[i][j] += f[i - 1][j - 1] * (n - j + 1) |
| 87 | + if j >= k: |
| 88 | + f[i][j] += f[i - 1][j] * (j - k) |
| 89 | + f[i][j] %= mod |
| 90 | + return f[goal][n] |
61 | 91 | ```
|
62 | 92 |
|
63 | 93 | ### **Java**
|
64 | 94 |
|
65 | 95 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
66 | 96 |
|
67 | 97 | ```java
|
| 98 | +class Solution { |
| 99 | + public int numMusicPlaylists(int n, int goal, int k) { |
| 100 | + final int mod = (int) 1e9 + 7; |
| 101 | + long[][] f = new long[goal + 1][n + 1]; |
| 102 | + f[0][0] = 1; |
| 103 | + for (int i = 1; i <= goal; ++i) { |
| 104 | + for (int j = 1; j <= n; ++j) { |
| 105 | + f[i][j] += f[i - 1][j - 1] * (n - j + 1); |
| 106 | + if (j >= k) { |
| 107 | + f[i][j] += f[i - 1][j] * (j - k); |
| 108 | + } |
| 109 | + f[i][j] %= mod; |
| 110 | + } |
| 111 | + } |
| 112 | + return (int) f[goal][n]; |
| 113 | + } |
| 114 | +} |
| 115 | +``` |
| 116 | + |
| 117 | +### **C++** |
| 118 | + |
| 119 | +```cpp |
| 120 | +class Solution { |
| 121 | +public: |
| 122 | + int numMusicPlaylists(int n, int goal, int k) { |
| 123 | + const int mod = 1e9 + 7; |
| 124 | + long long f[goal + 1][n + 1]; |
| 125 | + memset(f, 0, sizeof(f)); |
| 126 | + f[0][0] = 1; |
| 127 | + for (int i = 1; i <= goal; ++i) { |
| 128 | + for (int j = 1; j <= n; ++j) { |
| 129 | + f[i][j] += f[i - 1][j - 1] * (n - j + 1); |
| 130 | + if (j >= k) { |
| 131 | + f[i][j] += f[i - 1][j] * (j - k); |
| 132 | + } |
| 133 | + f[i][j] %= mod; |
| 134 | + } |
| 135 | + } |
| 136 | + return f[goal][n]; |
| 137 | + } |
| 138 | +}; |
| 139 | +``` |
68 | 140 |
|
| 141 | +### **Go** |
| 142 | +
|
| 143 | +```go |
| 144 | +func numMusicPlaylists(n int, goal int, k int) int { |
| 145 | + const mod = 1e9 + 7 |
| 146 | + f := make([][]int, goal+1) |
| 147 | + for i := range f { |
| 148 | + f[i] = make([]int, n+1) |
| 149 | + } |
| 150 | + f[0][0] = 1 |
| 151 | + for i := 1; i <= goal; i++ { |
| 152 | + for j := 1; j <= n; j++ { |
| 153 | + f[i][j] += f[i-1][j-1] * (n - j + 1) |
| 154 | + if j >= k { |
| 155 | + f[i][j] += f[i-1][j] * (j - k) |
| 156 | + } |
| 157 | + f[i][j] %= mod |
| 158 | + } |
| 159 | + } |
| 160 | + return f[goal][n] |
| 161 | +} |
69 | 162 | ```
|
70 | 163 |
|
71 | 164 | ### **...**
|
|
0 commit comments