🔗 Live Demo: digit-recognize.onrender.com
A Flask-based web application that serves a machine learning model for digit recognition. Configured for production deployment on Render with Gunicorn.
- Backend: Flask
- Machine Learning: TensorFlow
- WSGI Server: Gunicorn
- Database Connector: Psycopg2
- Core Libraries: NumPy, Matplotlib
digit_recognize/
├── app.py # Main Flask app
├── requirements.txt # pip dependencies
├── render.yaml # Render deployment config
├── environment.yml # (Optional) Conda env file
├── run.sh # Local dev setup script
└── README.md # Project documentation
This project uses uv (fast Python installer), but works with any virtual environment.
- Clone the repository
git clone https://github.com/ankitsharma-tech/Digit-Recognize.git
cd Digit-Recognize
- Create & activate a virtual environment
# For Python 3.8
python3.8 -m venv .venv
source .venv/bin/activate
- Install dependencies
pip install -r requirements.txt
- Start the app
python app.py
App will be available at 👉 http://0.0.0.0:5000
This app is deployment-ready with render.yaml
.
-
Push code to GitHub / GitLab / Bitbucket
-
In Render Dashboard → click “New +” → “Web Service”
-
Connect your repo
-
Render auto-detects
render.yaml
and applies:- Python:
3.8.10
- Build Command:
pip install -r requirements.txt
- Start Command:
gunicorn app:app
- Python:
-
Click “Create Web Service” → live URL provided on success 🚀