Skip to content

Fixes: #6551 #7072

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
  • Loading branch information
pre-commit-ci[bot] committed Oct 12, 2022
commit bfd165f4f431e072220b0e9d198dc29ebb86bbe6
86 changes: 55 additions & 31 deletions machine_learning/xgboostclassifier.py
Original file line number Diff line number Diff line change
@@ -1,55 +1,79 @@
from xgboost import XGBClassifier
#https://xgboost.readthedocs.io/en/stable/
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# https://xgboost.readthedocs.io/en/stable/
import numpy as np
import pandas as pd
import seaborn as sns
from xgboost import XGBClassifier


training = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
training = pd.read_csv("../input/titanic/train.csv")
test = pd.read_csv("../input/titanic/test.csv")

# Commented out IPython magic to ensure Python compatibility.
training['train_test'] = 1
test['train_test'] = 0
test['Survived'] = np.NaN
all_data = pd.concat([training,test])
training["train_test"] = 1
test["train_test"] = 0
test["Survived"] = np.NaN
all_data = pd.concat([training, test])
# %matplotlib inline
all_data.columns

all_data.describe()

all_data['cabin_mul']=all_data.Cabin.apply(lambda cabin_class: 0 if pd.isna(cabin_class) else len(x.split(' ')))
all_data['cabin_adv'] = all_data.Cabin.apply(lambda cabin_number: str(cabin_number)[0])
all_data['name_title']= all_data.Name.apply(lambda name: name.split(',')[1].split('.')[0].strip())
all_data.Age=all_data.Age.fillna(training.Age.median())
all_data.Fare=all_data.Fare.fillna(training.Fare.median())
all_data.dropna(subset=['Embarked'],inplace=True)
all_data['norm_fare']=np.log(all_data.Fare+1)
all_data.Pclass=all_data.Pclass.astype(str)
all_data['Age']=all_data['Age'].apply(np.int64)
all_dummies = pd.get_dummies(all_data[['Pclass','Sex','Age','SibSp','Parch','norm_fare',
'Embarked','cabin_adv','cabin_mul',
'name_title','train_test']])
all_data["cabin_mul"] = all_data.Cabin.apply(
lambda cabin_class: 0 if pd.isna(cabin_class) else len(x.split(" "))
)
all_data["cabin_adv"] = all_data.Cabin.apply(lambda cabin_number: str(cabin_number)[0])
all_data["name_title"] = all_data.Name.apply(
lambda name: name.split(",")[1].split(".")[0].strip()
)
all_data.Age = all_data.Age.fillna(training.Age.median())
all_data.Fare = all_data.Fare.fillna(training.Fare.median())
all_data.dropna(subset=["Embarked"], inplace=True)
all_data["norm_fare"] = np.log(all_data.Fare + 1)
all_data.Pclass = all_data.Pclass.astype(str)
all_data["Age"] = all_data["Age"].apply(np.int64)
all_dummies = pd.get_dummies(
all_data[
[
"Pclass",
"Sex",
"Age",
"SibSp",
"Parch",
"norm_fare",
"Embarked",
"cabin_adv",
"cabin_mul",
"name_title",
"train_test",
]
]
)

from sklearn.preprocessing import StandardScaler

scale = StandardScaler()
all_dummies_scaled = all_dummies.copy()
all_dummies_scaled[['Age','SibSp','Parch','norm_fare']]= scale.fit_transform(all_dummies_scaled[['Age','SibSp','Parch','norm_fare']])
all_dummies_scaled[["Age", "SibSp", "Parch", "norm_fare"]] = scale.fit_transform(
all_dummies_scaled[["Age", "SibSp", "Parch", "norm_fare"]]
)
all_dummies_scaled.head()

x_train_scaled = all_dummies_scaled[all_dummies_scaled.train_test == 1].drop(['train_test'], axis =1)
x_test_scaled = all_dummies_scaled[all_dummies_scaled.train_test == 0].drop(['train_test'], axis =1)
x_train_scaled = all_dummies_scaled[all_dummies_scaled.train_test == 1].drop(
["train_test"], axis=1
)
x_test_scaled = all_dummies_scaled[all_dummies_scaled.train_test == 0].drop(
["train_test"], axis=1
)

y_train = all_data[all_data.train_test==1].Survived
y_train = all_data[all_data.train_test == 1].Survived

from xgboost import XGBClassifier

xgb = XGBClassifier()
xgb.fit(X_train_scaled,y_train)
xgb.fit(X_train_scaled, y_train)

y_hat_base_vc = xgb.predict(x_test_scaled).astype(int)
basic_submission = {'PassengerId': test.PassengerId, 'Survived': y_hat_base_vc}
basic_submission = {"PassengerId": test.PassengerId, "Survived": y_hat_base_vc}
base_submission = pd.DataFrame(data=basic_submission)
base_submission.to_csv('xgb_submission.csv', index=False)
base_submission.to_csv("xgb_submission.csv", index=False)