Skip to content

Euler Problem 27 solution script Added #1466

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 22 commits into from
Oct 31, 2019
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Remove slow test, wrap long comments, format with psf/black
  • Loading branch information
cclauss authored Oct 31, 2019
commit 2f0d1884cf46753df342be0adec8c44ac11af0da
71 changes: 39 additions & 32 deletions project_euler/problem_27/sol1.py
Original file line number Diff line number Diff line change
@@ -1,56 +1,63 @@
"""
Euler discovered the remarkable quadratic formula:
n2 + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, −79 and 1601, is −126479.
It turns out that the formula will produce 40 primes for the consecutive values
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes
for the consecutive values n = 0 to 79. The product of the coefficients, −79 and
1601, is −126479.
Considering quadratics of the form:
n² + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
Find the product of the coefficients, a and b, for the quadratic expression that
produces the maximum number of primes for consecutive values of n, starting with
n = 0.
"""

import math


def is_prime(k):
# checks if a number is prime
if k < 2 or k % 2 == 0:
return False
elif k == 2:
return True
else:
for x in range(3, int(math.sqrt(k) + 1), 2):
if k % x == 0:
return False
# checks if a number is prime
if k < 2 or k % 2 == 0:
return False
elif k == 2:
return True
else:
for x in range(3, int(math.sqrt(k) + 1), 2):
if k % x == 0:
return False
return True

return True

def solution(a_limit, b_limit):
"""
"""
>>> solution(1000, 1000)
-59231
>>> solution(2000, 2000)
-126479
>>> solution(200, 1000)
-59231
>>> solution(200, 200)
-4925
>>> solution(-1000, 1000)
0
>>> solution(-1000, -1000)
0
"""
longest = [0, 0, 0]
# length, a, b
for a in range((a_limit * -1) + 1, a_limit):
for b in range(2, b_limit):
if is_prime(b):
count = 0
n = 0
while is_prime((n ** 2) + (a * n) + b):
count += 1
n += 1

if count > longest[0]:
longest = [count, a, b]
longest = [0, 0, 0] # length, a, b
for a in range((a_limit * -1) + 1, a_limit):
for b in range(2, b_limit):
if is_prime(b):
count = 0
n = 0
while is_prime((n ** 2) + (a * n) + b):
count += 1
n += 1
if count > longest[0]:
longest = [count, a, b]
ans = longest[1] * longest[2]
return ans

ans = longest[1] * longest[2]
return ans

if __name__ == "__main__":
print(solution(1000, 1000))
print(solution(1000, 1000))