Skip to content
Open
59 changes: 41 additions & 18 deletions src/main/java/com/thealgorithms/dynamicprogramming/Knapsack.java
Original file line number Diff line number Diff line change
Expand Up @@ -3,53 +3,76 @@
import java.util.Arrays;

/**
* A Dynamic Programming based solution for the 0-1 Knapsack problem.
* This class provides a method, `knapSack`, that calculates the maximum value that can be
* obtained from a given set of items with weights and values, while not exceeding a
* given weight capacity.
* 0/1 Knapsack Problem - Dynamic Programming solution.
*
* @see <a href="https://en.wikipedia.org/?title=0-1_Knapsack_problem">0-1 Knapsack Problem </a>
* This algorithm solves the classic optimization problem where we have n items,
* each with a weight and a value. The goal is to maximize the total value
* without exceeding the knapsack's weight capacity.
*
* Time Complexity: O(n * W)
* Space Complexity: O(W)
*
* Example:
* values = {60, 100, 120}
* weights = {10, 20, 30}
* W = 50
* Output: 220
*
* @author Arpita
* @see <a href="https://en.wikipedia.org/wiki/Knapsack_problem">Knapsack Problem</a>
*/
public final class Knapsack {

private Knapsack() {
}

/**
* Validates the input to ensure correct constraints.
*/
private static void throwIfInvalidInput(final int weightCapacity, final int[] weights, final int[] values) {
if (weightCapacity < 0) {
throw new IllegalArgumentException("Weight capacity should not be negative.");
}
if (weights == null || values == null || weights.length != values.length) {
throw new IllegalArgumentException("Input arrays must not be null and must have the same length.");
throw new IllegalArgumentException("Weights and values must be non-null and of the same length.");
}
if (Arrays.stream(weights).anyMatch(w -> w <= 0)) {
throw new IllegalArgumentException("Input array should not contain non-positive weight(s).");
throw new IllegalArgumentException("Weights must be positive.");
}
}

/**
* Solves the 0-1 Knapsack problem using Dynamic Programming.
* Solves the 0/1 Knapsack problem using Dynamic Programming (bottom-up approach).
*
* @param weightCapacity The maximum weight capacity of the knapsack.
* @param weights An array of item weights.
* @param values An array of item values.
* @return The maximum value that can be obtained without exceeding the weight capacity.
* @throws IllegalArgumentException If the input arrays are null or have different lengths.
* @param weights The array of item weights.
* @param values The array of item values.
* @return The maximum total value achievable without exceeding capacity.
*/
public static int knapSack(final int weightCapacity, final int[] weights, final int[] values) throws IllegalArgumentException {
public static int knapSack(final int weightCapacity, final int[] weights, final int[] values) {
throwIfInvalidInput(weightCapacity, weights, values);

// DP table to store the state of the maximum possible return for a given weight capacity.
int[] dp = new int[weightCapacity + 1];

// Fill dp[] array iteratively
for (int i = 0; i < values.length; i++) {
for (int w = weightCapacity; w > 0; w--) {
if (weights[i] <= w) {
dp[w] = Math.max(dp[w], dp[w - weights[i]] + values[i]);
}
for (int w = weightCapacity; w >= weights[i]; w--) {
dp[w] = Math.max(dp[w], dp[w - weights[i]] + values[i]);
}
}

return dp[weightCapacity];
}

/*
// Example main method for local testing only.
public static void main(String[] args) {
int[] values = {60, 100, 120};
int[] weights = {10, 20, 30};
int weightCapacity = 50;

int maxValue = knapSack(weightCapacity, weights, values);
System.out.println("Maximum value = " + maxValue); // Output: 220
}
*/
}