Skip to content

Shortest coprime segment using sliding window technique #6296

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jun 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
package com.thealgorithms.slidingwindow;

import java.util.Arrays;
import java.util.LinkedList;

/**
* The Sliding Window technique together with 2-stack technique is used to find coprime segment of minimal size in an array.
* Segment a[i],...,a[i+l] is coprime if gcd(a[i], a[i+1], ..., a[i+l]) = 1
* <p>
* Run-time complexity: O(n log n)
* What is special about this 2-stack technique is that it enables us to remove element a[i] and find gcd(a[i+1],...,a[i+l]) in amortized O(1) time.
* For 'remove' worst-case would be O(n) operation, but this happens rarely.
* Main observation is that each element gets processed a constant amount of times, hence complexity will be:
* O(n log n), where log n comes from complexity of gcd.
* <p>
* More generally, the 2-stack technique enables us to 'remove' an element fast if it is known how to 'add' an element fast to the set.
* In our case 'adding' is calculating d' = gcd(a[i],...,a[i+l+1]), when d = gcd(a[i],...a[i]) with d' = gcd(d, a[i+l+1]).
* and removing is find gcd(a[i+1],...,a[i+l]). We don't calculate it explicitly, but it is pushed in the stack which we can pop in O(1).
* <p>
* One can change methods 'legalSegment' and function 'f' in DoubleStack to adapt this code to other sliding-window type problems.
* I recommend this article for more explanations: "<a href="https://codeforces.com/edu/course/2/lesson/9/2">CF Article</a>">Article 1</a> or <a href="https://usaco.guide/gold/sliding-window?lang=cpp#method-2---two-stacks">USACO Article</a>
* <p>
* Another method to solve this problem is through segment trees. Then query operation would have O(log n), not O(1) time, but runtime complexity would still be O(n log n)
*
* @author DomTr (<a href="https://github.com/DomTr">Github</a>)
*/
public final class ShortestCoprimeSegment {
// Prevent instantiation
private ShortestCoprimeSegment() {
}

/**
* @param arr is the input array
* @return shortest segment in the array which has gcd equal to 1. If no such segment exists or array is empty, returns empty array
*/
public static long[] shortestCoprimeSegment(long[] arr) {
if (arr == null || arr.length == 0) {
return new long[] {};
}
DoubleStack front = new DoubleStack();
DoubleStack back = new DoubleStack();
int n = arr.length;
int l = 0;
int shortestLength = n + 1;
int beginsAt = -1; // beginning index of the shortest coprime segment
for (int i = 0; i < n; i++) {
back.push(arr[i]);
while (legalSegment(front, back)) {
remove(front, back);
if (shortestLength > i - l + 1) {
beginsAt = l;
shortestLength = i - l + 1;
}
l++;
}
}
if (shortestLength > n) {
shortestLength = -1;
}
if (shortestLength == -1) {
return new long[] {};
}
return Arrays.copyOfRange(arr, beginsAt, beginsAt + shortestLength);
}

private static boolean legalSegment(DoubleStack front, DoubleStack back) {
return gcd(front.top(), back.top()) == 1;
}

private static long gcd(long a, long b) {
if (a < b) {
return gcd(b, a);
} else if (b == 0) {
return a;
} else {
return gcd(a % b, b);
}
}

/**
* This solves the problem of removing elements quickly.
* Even though the worst case of 'remove' method is O(n), it is a very pessimistic view.
* We will need to empty out 'back', only when 'from' is empty.
* Consider element x when it is added to stack 'back'.
* After some time 'front' becomes empty and x goes to 'front'. Notice that in the for-loop we proceed further and x will never come back to any stacks 'back' or 'front'.
* In other words, every element gets processed by a constant number of operations.
* So 'remove' amortized runtime is actually O(n).
*/
private static void remove(DoubleStack front, DoubleStack back) {
if (front.isEmpty()) {
while (!back.isEmpty()) {
front.push(back.pop());
}
}
front.pop();
}

/**
* DoubleStack serves as a collection of two stacks. One is a normal stack called 'stack', the other 'values' stores gcd-s up until some index.
*/
private static class DoubleStack {
LinkedList<Long> stack;
LinkedList<Long> values;

DoubleStack() {
values = new LinkedList<>();
stack = new LinkedList<>();
values.add(0L); // Initialise with 0 which is neutral element in terms of gcd, i.e. gcd(a,0) = a
}

long f(long a, long b) { // Can be replaced with other function
return gcd(a, b);
}

public void push(long x) {
stack.addLast(x);
values.addLast(f(values.getLast(), x));
}

public long top() {
return values.getLast();
}

public long pop() {
long res = stack.getLast();
stack.removeLast();
values.removeLast();
return res;
}

public boolean isEmpty() {
return stack.isEmpty();
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
package com.thealgorithms.slidingwindow;

import static org.junit.jupiter.api.Assertions.assertArrayEquals;

import java.util.Arrays;
import org.junit.jupiter.api.Test;

/**
* Unit tests for ShortestCoprimeSegment algorithm
*
* @author DomTr (<a href="https://github.com/DomTr">...</a>)
*/
public class ShortestCoprimeSegmentTest {
@Test
public void testShortestCoprimeSegment() {
assertArrayEquals(new long[] {4, 6, 9}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 9, 3, 6}));
assertArrayEquals(new long[] {4, 5}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 5, 9, 3, 6}));
assertArrayEquals(new long[] {3, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {3, 2}));
assertArrayEquals(new long[] {9, 10}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {3, 9, 9, 9, 10}));

long[] test5 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 11 * 7 * 3 * 5 * 13, 7 * 13, 11 * 7 * 3 * 5 * 13};
long[] answer5 = Arrays.copyOfRange(test5, 0, test5.length - 1);
assertArrayEquals(answer5, ShortestCoprimeSegment.shortestCoprimeSegment(test5));

// Test suite, when the entire array needs to be taken
long[] test6 = new long[] {3 * 7, 7 * 5, 5 * 7 * 3, 3 * 5};
assertArrayEquals(test6, ShortestCoprimeSegment.shortestCoprimeSegment(test6));

long[] test7 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 3 * 7};
assertArrayEquals(test7, ShortestCoprimeSegment.shortestCoprimeSegment(test7));

long[] test8 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 5 * 7};
assertArrayEquals(test8, ShortestCoprimeSegment.shortestCoprimeSegment(test8));

long[] test9 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 11 * 7 * 3 * 5 * 13, 7 * 13};
assertArrayEquals(test9, ShortestCoprimeSegment.shortestCoprimeSegment(test9));

long[] test10 = new long[] {3 * 11, 7 * 11, 3 * 7 * 11, 3 * 5 * 7 * 11, 3 * 5 * 7 * 11 * 13, 2 * 3 * 5 * 7 * 11 * 13, 2 * 3 * 5 * 7 * 11 * 13 * 17, 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19, 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23, 7 * 13};
assertArrayEquals(test10, ShortestCoprimeSegment.shortestCoprimeSegment(test10));

// Segment can consist of one element
long[] test11 = new long[] {1};
assertArrayEquals(test11, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 1, 3, 6}));
long[] test12 = new long[] {1};
assertArrayEquals(test12, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {1}));
}
@Test
public void testShortestCoprimeSegment2() {
assertArrayEquals(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2 * 3 * 5 * 7}));
assertArrayEquals(new long[] {5 * 7, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2}));
assertArrayEquals(new long[] {5 * 7, 2 * 5 * 7, 2 * 11}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2 * 5 * 7, 2 * 11}));
assertArrayEquals(new long[] {3 * 5 * 7, 2 * 3, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2, 2 * 3, 2 * 3 * 5, 3 * 5 * 7, 2 * 3, 2}));
}
@Test
public void testNoCoprimeSegment() {
// There may not be a coprime segment
long[] empty = new long[] {};
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(null));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(empty));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 8, 12, 8}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 4, 4, 4, 10, 4, 6, 8, 12, 8}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {100}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2, 2, 2}));
}
}