forked from amueller/introduction_to_ml_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_knn_classification.py
27 lines (20 loc) · 1.04 KB
/
plot_knn_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import euclidean_distances
from sklearn.neighbors import KNeighborsClassifier
from .datasets import make_forge
from .plot_helpers import discrete_scatter
def plot_knn_classification(n_neighbors=1):
X, y = make_forge()
X_test = np.array([[8.2, 3.66214339], [9.9, 3.2], [11.2, .5]])
dist = euclidean_distances(X, X_test)
closest = np.argsort(dist, axis=0)
for x, neighbors in zip(X_test, closest.T):
for neighbor in neighbors[:n_neighbors]:
plt.arrow(x[0], x[1], X[neighbor, 0] - x[0],
X[neighbor, 1] - x[1], head_width=0, fc='k', ec='k')
clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
test_points = discrete_scatter(X_test[:, 0], X_test[:, 1], clf.predict(X_test), markers="*")
training_points = discrete_scatter(X[:, 0], X[:, 1], y)
plt.legend(training_points + test_points, ["training class 0", "training class 1",
"test pred 0", "test pred 1"])