import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import euclidean_distances from sklearn.neighbors import KNeighborsClassifier from .datasets import make_forge from .plot_helpers import discrete_scatter def plot_knn_classification(n_neighbors=1): X, y = make_forge() X_test = np.array([[8.2, 3.66214339], [9.9, 3.2], [11.2, .5]]) dist = euclidean_distances(X, X_test) closest = np.argsort(dist, axis=0) for x, neighbors in zip(X_test, closest.T): for neighbor in neighbors[:n_neighbors]: plt.arrow(x[0], x[1], X[neighbor, 0] - x[0], X[neighbor, 1] - x[1], head_width=0, fc='k', ec='k') clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y) test_points = discrete_scatter(X_test[:, 0], X_test[:, 1], clf.predict(X_test), markers="*") training_points = discrete_scatter(X[:, 0], X[:, 1], y) plt.legend(training_points + test_points, ["training class 0", "training class 1", "test pred 0", "test pred 1"])