Pay Attention to MLPs, arxiv
PaddlePaddle training/validation code and pretrained models for gMLP.
The 3rd party pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-09-27): Model FLOPs and # params are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
gmlp_s16_224 | 79.64 | 94.63 | 19.4M | 4.5G | 224 | 0.875 | bicubic | google/baidu(bcth) |
*The results are evaluated on ImageNet2012 validation set.
Note: gMLP weights are ported from timm
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./gmlp_s16_224.pdparams
, to use the gmlp_s16_224
model in python:
from config import get_config
from gmlp import build_gated_mlp as build_model
# config files in ./configs/
config = get_config('./configs/gmlp_s16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./gmlp_s16_224')
model.set_dict(model_state_dict)
To evaluate gMLP model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/gmlp_s16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./gmlp_s16_224'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/gmlp_s16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./gmlp_s16_224'
To train the gMLP Transformer model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/gmlp_s16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/gmlp_s16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{zhang2021gmlp,
title={GMLP: Building Scalable and Flexible Graph Neural Networks with Feature-Message Passing},
author={Zhang, Wentao and Shen, Yu and Lin, Zheyu and Li, Yang and Li, Xiaosen and Ouyang, Wen and Tao, Yangyu and Yang, Zhi and Cui, Bin},
journal={arXiv preprint arXiv:2104.09880},
year={2021}
}