forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmlp.py
204 lines (172 loc) · 6.91 KB
/
gmlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import math
import copy
from functools import partial
import paddle
import paddle.nn as nn
from droppath import DropPath
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class PatchEmbedding(nn.Layer):
"""Patch Embeddings
Apply patch embeddings on input images. Embeddings is implemented using a Conv2D op.
Attributes:
image_size: int, input image size, default: 224
patch_size: int, size of patch, default: 4
in_channels: int, input image channels, default: 3
embed_dim: int, embedding dimension, default: 96
"""
def __init__(self, image_size=224, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
super(PatchEmbedding, self).__init__()
image_size = (image_size, image_size)
patch_size = (patch_size, patch_size)
patches_resolution = [image_size[0]//patch_size[0], image_size[1]//patch_size[1]]
self.image_size = image_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_channels = in_channels
self.embed_dim = embed_dim
self.patch_embed = nn.Conv2D(in_channels=in_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size)
self.norm = norm_layer if norm_layer is not None else Identity()
def forward(self, x):
x = self.patch_embed(x) # [batch, embed_dim, h, w] h,w = patch_resolution
x = x.flatten(start_axis=2, stop_axis=-1) # [batch, embed_dim, h*w] h*w = num_patches
x = x.transpose([0, 2, 1]) # [batch, h*w, embed_dim]
x = self.norm(x) # [batch, num_patches, embed_dim]
return x
class GMlp(nn.Layer):
""" GatedMLP module
Impl using nn.Linear and activation is GELU, dropout is applied.
Ops: fc -> act -> dropout -> gate -> fc -> dropout
Attributes:
fc1: nn.Linear
fc2: nn.Linear
act: GELU
gate: gate layer
dropout1: dropout after fc1
dropout2: dropout after fc2
"""
def __init__(self, in_features, hidden_features, gate_layer=None, dropout=0.):
super(GMlp, self).__init__()
w_attr_1, b_attr_1 = self._init_weights()
self.fc1 = nn.Linear(in_features,
hidden_features,
weight_attr=w_attr_1,
bias_attr=b_attr_1)
if gate_layer is not None:
assert hidden_features % 2 == 0
self.gate = gate_layer(hidden_features)
hidden_features = hidden_features // 2
else:
self.gate = Identity()
w_attr_2, b_attr_2 = self._init_weights()
self.fc2 = nn.Linear(hidden_features,
in_features,
weight_attr=w_attr_2,
bias_attr=b_attr_2)
self.act = nn.GELU()
self.dropout = nn.Dropout(dropout)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform())
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=1e-6))
return weight_attr, bias_attr
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.gate(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class SpatialGatingUnit(nn.Layer):
def __init__(self, dim, seq_len):
super(SpatialGatingUnit, self).__init__()
gate_dim = dim // 2
self.norm = nn.LayerNorm(gate_dim, epsilon=1e-6)
w_attr, b_attr = self._init_weights()
self.proj = nn.Linear(seq_len,
seq_len,
weight_attr=w_attr,
bias_attr=b_attr)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(std=1e-6))
bias_attr = paddle.ParamAttr(initializer=nn.initializer.Constant(1))
return weight_attr, bias_attr
def forward(self, x):
u, v = x.chunk(2, axis=-1)
v = self.norm(v)
v = self.proj(v.transpose([0, 2, 1]))
return u * v.transpose([0, 2, 1])
class SpatialGatingBlock(nn.Layer):
def __init__(self, dim, seq_len, mlp_ratio=4, dropout=0., droppath=0.):
super(SpatialGatingBlock, self).__init__()
channels_dim = int(mlp_ratio * dim)
self.norm = nn.LayerNorm(dim, epsilon=1e-6)
sgu = partial(SpatialGatingUnit, seq_len=seq_len)
self.mlp_channels = GMlp(dim, channels_dim, gate_layer=sgu, dropout=dropout)
self.drop_path = DropPath(droppath)
def forward(self, x):
h = x
x = self.norm(x)
x = self.mlp_channels(x)
x = self.drop_path(x)
x = x + h
return x
class GatedMlp(nn.Layer):
def __init__(self,
num_classes=1000,
image_size=224,
in_channels=3,
patch_size=16,
num_mixer_layers=30,
embed_dim=256,
mlp_ratio=6,
dropout=0.,
droppath=0.,
patch_embed_norm=False):
super(GatedMlp, self).__init__()
self.num_classes = num_classes
self.num_features = embed_dim
self.embed_dim = embed_dim
norm_layer=nn.LayerNorm(embed_dim, epsilon=1e-6)
self.patch_embed = PatchEmbedding(
image_size=image_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=embed_dim,
norm_layer=norm_layer if patch_embed_norm else None)
self.mixer_layers = nn.Sequential(
*[SpatialGatingBlock(
embed_dim,
self.patch_embed.num_patches,
mlp_ratio,
dropout,
droppath) for _ in range(num_mixer_layers)])
self.norm = nn.LayerNorm(embed_dim, epsilon=1e-6)
self.head = nn.Linear(embed_dim, self.num_classes)
def forward_features(self, x):
x = self.patch_embed(x)
x = self.mixer_layers(x)
x = self.norm(x)
x = x.mean(axis=1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def build_gated_mlp(config):
model = GatedMlp(num_classes=config.MODEL.NUM_CLASSES,
image_size=config.DATA.IMAGE_SIZE,
in_channels=3,
num_mixer_layers=config.MODEL.MIXER.NUM_LAYERS,
embed_dim=config.MODEL.MIXER.HIDDEN_SIZE,
mlp_ratio=config.MODEL.MIXER.MLP_RATIO,
dropout=config.MODEL.DROPOUT,
droppath=config.MODEL.DROPPATH)
return model