@@ -13859,10 +13859,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
13859
13859
13860
13860
13861
13861
13862
- <div id="f7f355c5-69e7-4db0-b862-0108bbf9a1a5 "></div>
13862
+ <div id="ceac96c5-9657-4da0-8345-7fa2de57788b "></div>
13863
13863
<div class="output_subarea output_widget_view ">
13864
13864
<script type="text/javascript">
13865
- var element = $('#f7f355c5-69e7-4db0-b862-0108bbf9a1a5 ');
13865
+ var element = $('#ceac96c5-9657-4da0-8345-7fa2de57788b ');
13866
13866
</script>
13867
13867
<script type="application/vnd.jupyter.widget-view+json">
13868
13868
{"model_id": "6fd10f1692234019836a7b40e83b56dd", "version_major": 2, "version_minor": 0}
@@ -13881,10 +13881,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
13881
13881
13882
13882
13883
13883
13884
- <div id="1cd864ed-2f26-414a-9e7b-cca661359203 "></div>
13884
+ <div id="92e06761-c3ed-4ca7-80a8-f1e70848b7f6 "></div>
13885
13885
<div class="output_subarea output_widget_view ">
13886
13886
<script type="text/javascript">
13887
- var element = $('#1cd864ed-2f26-414a-9e7b-cca661359203 ');
13887
+ var element = $('#92e06761-c3ed-4ca7-80a8-f1e70848b7f6 ');
13888
13888
</script>
13889
13889
<script type="application/vnd.jupyter.widget-view+json">
13890
13890
{"model_id": "9a5ab9cfecc242b7aaf0f140e87bdde6", "version_major": 2, "version_minor": 0}
@@ -13963,10 +13963,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
13963
13963
13964
13964
13965
13965
13966
- <div id="6960f9a5-5688-4564-873d-9adbd34be108 "></div>
13966
+ <div id="894a81fa-daca-4461-b9cf-8c8b2f318695 "></div>
13967
13967
<div class="output_subarea output_widget_view ">
13968
13968
<script type="text/javascript">
13969
- var element = $('#6960f9a5-5688-4564-873d-9adbd34be108 ');
13969
+ var element = $('#894a81fa-daca-4461-b9cf-8c8b2f318695 ');
13970
13970
</script>
13971
13971
<script type="application/vnd.jupyter.widget-view+json">
13972
13972
{"model_id": "434496e448984f55925d22fad0349ada", "version_major": 2, "version_minor": 0}
@@ -13985,10 +13985,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
13985
13985
13986
13986
13987
13987
13988
- <div id="63d7255b-e667-4bea-af37-72e5372a0883 "></div>
13988
+ <div id="f0c0c808-7ff5-4702-83c5-2526a1f39a68 "></div>
13989
13989
<div class="output_subarea output_widget_view ">
13990
13990
<script type="text/javascript">
13991
- var element = $('#63d7255b-e667-4bea-af37-72e5372a0883 ');
13991
+ var element = $('#f0c0c808-7ff5-4702-83c5-2526a1f39a68 ');
13992
13992
</script>
13993
13993
<script type="application/vnd.jupyter.widget-view+json">
13994
13994
{"model_id": "f7d1803b3c6c4197b6612c5fdf189746", "version_major": 2, "version_minor": 0}
@@ -14007,10 +14007,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
14007
14007
14008
14008
14009
14009
14010
- <div id="dd55a253-1bc0-4801-a02f-de6f7145ad2f "></div>
14010
+ <div id="40209f7f-f501-410b-b86c-1dff1f4e15e8 "></div>
14011
14011
<div class="output_subarea output_widget_view ">
14012
14012
<script type="text/javascript">
14013
- var element = $('#dd55a253-1bc0-4801-a02f-de6f7145ad2f ');
14013
+ var element = $('#40209f7f-f501-410b-b86c-1dff1f4e15e8 ');
14014
14014
</script>
14015
14015
<script type="application/vnd.jupyter.widget-view+json">
14016
14016
{"model_id": "c8d633f579de438a916d9ef3de9d8fe0", "version_major": 2, "version_minor": 0}
@@ -14029,10 +14029,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
14029
14029
14030
14030
14031
14031
14032
- <div id="8dcdb0a2-c5bc-47ba-b4d8-98752ad7d19c "></div>
14032
+ <div id="ba9f83fa-677a-4478-977a-84f6680e1016 "></div>
14033
14033
<div class="output_subarea output_widget_view ">
14034
14034
<script type="text/javascript">
14035
- var element = $('#8dcdb0a2-c5bc-47ba-b4d8-98752ad7d19c ');
14035
+ var element = $('#ba9f83fa-677a-4478-977a-84f6680e1016 ');
14036
14036
</script>
14037
14037
<script type="application/vnd.jupyter.widget-view+json">
14038
14038
{"model_id": "de6c01c6983041e2b972f6008caefaea", "version_major": 2, "version_minor": 0}
@@ -14051,10 +14051,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
14051
14051
14052
14052
14053
14053
14054
- <div id="276a076a-ba10-46e9-bfe6-4b148d823c15 "></div>
14054
+ <div id="2927e9a1-6999-48b3-bfe3-9cb426add119 "></div>
14055
14055
<div class="output_subarea output_widget_view ">
14056
14056
<script type="text/javascript">
14057
- var element = $('#276a076a-ba10-46e9-bfe6-4b148d823c15 ');
14057
+ var element = $('#2927e9a1-6999-48b3-bfe3-9cb426add119 ');
14058
14058
</script>
14059
14059
<script type="application/vnd.jupyter.widget-view+json">
14060
14060
{"model_id": "05132c907a874fe2a2eb9cb6c81da3b3", "version_major": 2, "version_minor": 0}
@@ -17502,10 +17502,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
17502
17502
17503
17503
17504
17504
17505
- <div id="0345720f-a2f0-4660-a340-9c6e7ef44710 "></div>
17505
+ <div id="4471f788-129e-42f5-b40b-fe386231b101 "></div>
17506
17506
<div class="output_subarea output_widget_view ">
17507
17507
<script type="text/javascript">
17508
- var element = $('#0345720f-a2f0-4660-a340-9c6e7ef44710 ');
17508
+ var element = $('#4471f788-129e-42f5-b40b-fe386231b101 ');
17509
17509
</script>
17510
17510
<script type="application/vnd.jupyter.widget-view+json">
17511
17511
{"model_id": "00325922360c45009329d82ed6420f16", "version_major": 2, "version_minor": 0}
@@ -17524,10 +17524,10 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
17524
17524
17525
17525
17526
17526
17527
- <div id="293c269d-d3e1-472b-8a2d-c983f9bd3529 "></div>
17527
+ <div id="ea307193-bdef-4dd8-970e-5fca075d9c90 "></div>
17528
17528
<div class="output_subarea output_widget_view ">
17529
17529
<script type="text/javascript">
17530
- var element = $('#293c269d-d3e1-472b-8a2d-c983f9bd3529 ');
17530
+ var element = $('#ea307193-bdef-4dd8-970e-5fca075d9c90 ');
17531
17531
</script>
17532
17532
<script type="application/vnd.jupyter.widget-view+json">
17533
17533
{"model_id": "d48e2f4d6dd3467fb3f17e0244b0e361", "version_major": 2, "version_minor": 0}
@@ -17599,6 +17599,31 @@ <h2 id="Fine-tuning-the-NER+L model">Fine-tuning the NER+L model<a cla
17599
17599
</div>
17600
17600
</div>
17601
17601
17602
+ </div>
17603
+ <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
17604
+ </div><div class="inner_cell">
17605
+ <div class="text_cell_render border-box-sizing rendered_html">
17606
+ <h4 id="K-fold-metrics">K-fold metrics<a class="anchor-link" href="#K-fold-metrics">¶</a></h4><p>K-fold cross-validation offers a more robust evaluation of your model's performance by dividing your dataset into k subsets, or folds.
17607
+ Unlike a single evaluation on the entire dataset (like <code>cat._print_stats</code>), the k-fold approach ensures that every data point is used for both training and validation, thereby reducing the risk of bias and providing a more reliable estimate of the model's generalization capabilities.
17608
+ This method is particularly beneficial for assessing the fine-tuned performance of your model on specific datasets, as it accounts for variability and offers a comprehensive understanding of how the model might perform on unseen data.</p>
17609
+
17610
+ </div>
17611
+ </div>
17612
+ </div>
17613
+ <div class="cell border-box-sizing code_cell rendered">
17614
+ <div class="input">
17615
+ <div class="prompt input_prompt">In [ ]:</div>
17616
+ <div class="inner_cell">
17617
+ <div class="input_area">
17618
+ <div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># you need to import the module to use it</span>
17619
+ <span class="kn">from</span> <span class="nn">medcat.stats.kfold</span> <span class="kn">import</span> <span class="n">get_k_fold_stats</span>
17620
+ <span class="n">fps</span><span class="p">,</span> <span class="n">fns</span><span class="p">,</span> <span class="n">tps</span><span class="p">,</span> <span class="n">cui_prec</span><span class="p">,</span> <span class="n">cui_rec</span><span class="p">,</span> <span class="n">cui_f1</span><span class="p">,</span> <span class="n">cui_counts</span><span class="p">,</span> <span class="n">examples</span> <span class="o">=</span> <span class="n">get_k_fold_stats</span><span class="p">(</span><span class="n">cat</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span>
17621
+ </pre></div>
17622
+
17623
+ </div>
17624
+ </div>
17625
+ </div>
17626
+
17602
17627
</div>
17603
17628
<div class="cell border-box-sizing code_cell rendered">
17604
17629
<div class="input">
0 commit comments