Skip to content

[pull] main from doocs:main #311

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
142 changes: 86 additions & 56 deletions solution/0500-0599/0583.Delete Operation for Two Strings/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,11 +56,15 @@ tags:

### 方法一:动态规划

类似[1143. 最长公共子序列](https://github.com/doocs/leetcode/blob/main/solution/1100-1199/1143.Longest%20Common%20Subsequence/README.md)
我们定义 $f[i][j]$ 表示使得字符串 $\textit{word1}$ 的前 $i$ 个字符和字符串 $\textit{word2}$ 的前 $j$ 个字符相同的最小删除步数。那么答案为 $f[m][n]$,其中 $m$ 和 $n$ 分别是字符串 $\textit{word1}$ 和 $\textit{word2}$ 的长度

定义 `dp[i][j]` 表示使得 `word1[0:i-1]` 和 `word1[0:j-1]` 两个字符串相同所需执行的删除操作次数
初始时,如果 $j = 0$,那么 $f[i][0] = i$;如果 $i = 0$,那么 $f[0][j] = j$

时间复杂度:$O(mn)$。
当 $i, j > 0$ 时,如果 $\textit{word1}[i - 1] = \textit{word2}[j - 1]$,那么 $f[i][j] = f[i - 1][j - 1]$;否则 $f[i][j] = \min(f[i - 1][j], f[i][j - 1]) + 1$。

最终返回 $f[m][n]$ 即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是字符串 $\textit{word1}$ 和 $\textit{word2}$ 的长度。

<!-- tabs:start -->

Expand All @@ -70,18 +74,18 @@ tags:
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
dp[i][0] = i
f[i][0] = i
for j in range(1, n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
f[0][j] = j
for i, a in enumerate(word1, 1):
for j, b in enumerate(word2, 1):
if a == b:
f[i][j] = f[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1])
return dp[-1][-1]
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1
return f[m][n]
```

#### Java
Expand All @@ -90,23 +94,25 @@ class Solution:
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
dp[i][0] = i;
int[][] f = new int[m + 1][n + 1];
for (int i = 0; i <= m; ++i) {
f[i][0] = i;
}
for (int j = 1; j <= n; ++j) {
dp[0][j] = j;
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
char a = word1.charAt(i - 1);
char b = word2.charAt(j - 1);
if (a == b) {
f[i][j] = f[i - 1][j - 1];
} else {
dp[i][j] = 1 + Math.min(dp[i - 1][j], dp[i][j - 1]);
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
return dp[m][n];
return f[m][n];
}
}
```
Expand All @@ -117,19 +123,26 @@ class Solution {
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) dp[i][0] = i;
for (int j = 1; j <= n; ++j) dp[0][j] = j;
int m = word1.length(), n = word2.length();
vector<vector<int>> f(m + 1, vector<int>(n + 1));
for (int i = 0; i <= m; ++i) {
f[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
char a = word1[i - 1];
char b = word2[j - 1];
if (a == b) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
return dp[m][n];
return f[m][n];
}
};
```
Expand All @@ -139,24 +152,25 @@ public:
```go
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
dp[i][0] = i
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
f[i][0] = i
}
for j := range dp[0] {
dp[0][j] = j
for j := 1; j <= n; j++ {
f[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
a, b := word1[i-1], word2[j-1]
if a == b {
f[i][j] = f[i-1][j-1]
} else {
dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1])
f[i][j] = 1 + min(f[i-1][j], f[i][j-1])
}
}
}
return dp[m][n]
return f[m][n]
}
```

Expand All @@ -166,18 +180,23 @@ func minDistance(word1 string, word2 string) int {
function minDistance(word1: string, word2: string): number {
const m = word1.length;
const n = word2.length;
const dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
const f: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
}
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
f[i][j] = f[i - 1][j - 1];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
const max = dp[m][n];
return m - max + n - max;
return f[m][n];
}
```

Expand All @@ -186,20 +205,31 @@ function minDistance(word1: string, word2: string): number {
```rust
impl Solution {
pub fn min_distance(word1: String, word2: String) -> i32 {
let (m, n) = (word1.len(), word2.len());
let (word1, word2) = (word1.as_bytes(), word2.as_bytes());
let mut dp = vec![vec![0; n + 1]; m + 1];
let m = word1.len();
let n = word2.len();
let s: Vec<char> = word1.chars().collect();
let t: Vec<char> = word2.chars().collect();
let mut f = vec![vec![0; n + 1]; m + 1];

for i in 0..=m {
f[i][0] = i as i32;
}
for j in 0..=n {
f[0][j] = j as i32;
}

for i in 1..=m {
for j in 1..=n {
dp[i][j] = if word1[i - 1] == word2[j - 1] {
dp[i - 1][j - 1] + 1
let a = s[i - 1];
let b = t[j - 1];
if a == b {
f[i][j] = f[i - 1][j - 1];
} else {
dp[i - 1][j].max(dp[i][j - 1])
};
f[i][j] = std::cmp::min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
let max = dp[m][n];
(m - max + (n - max)) as i32
f[m][n]
}
}
```
Expand Down
Loading