Skip to content

[pull] master from TheAlgorithms:master #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 43 additions & 2 deletions data_structures/heap/skew_heap.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,55 @@ def __init__(self, value: T) -> None:

@property
def value(self) -> T:
"""Return the value of the node."""
"""
Return the value of the node.

>>> SkewNode(0).value
0
>>> SkewNode(3.14159).value
3.14159
>>> SkewNode("hello").value
'hello'
>>> SkewNode(None).value

>>> SkewNode(True).value
True
>>> SkewNode([]).value
[]
>>> SkewNode({}).value
{}
>>> SkewNode(set()).value
set()
>>> SkewNode(0.0).value
0.0
>>> SkewNode(-1e-10).value
-1e-10
>>> SkewNode(10).value
10
>>> SkewNode(-10.5).value
-10.5
>>> SkewNode().value
Traceback (most recent call last):
...
TypeError: SkewNode.__init__() missing 1 required positional argument: 'value'
"""
return self._value

@staticmethod
def merge(
root1: SkewNode[T] | None, root2: SkewNode[T] | None
) -> SkewNode[T] | None:
"""Merge 2 nodes together."""
"""
Merge 2 nodes together.
>>> SkewNode.merge(SkewNode(10),SkewNode(-10.5)).value
-10.5
>>> SkewNode.merge(SkewNode(10),SkewNode(10.5)).value
10
>>> SkewNode.merge(SkewNode(10),SkewNode(10)).value
10
>>> SkewNode.merge(SkewNode(-100),SkewNode(-10.5)).value
-100
"""
if not root1:
return root2

Expand Down
102 changes: 102 additions & 0 deletions machine_learning/loss_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,108 @@ def categorical_cross_entropy(
return -np.sum(y_true * np.log(y_pred))


def categorical_focal_cross_entropy(
y_true: np.ndarray,
y_pred: np.ndarray,
alpha: np.ndarray = None,
gamma: float = 2.0,
epsilon: float = 1e-15,
) -> float:
"""
Calculate the mean categorical focal cross-entropy (CFCE) loss between true
labels and predicted probabilities for multi-class classification.

CFCE loss is a generalization of binary focal cross-entropy for multi-class
classification. It addresses class imbalance by focusing on hard examples.

CFCE = -Σ alpha * (1 - y_pred)**gamma * y_true * log(y_pred)

Reference: [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf)

Parameters:
- y_true: True labels in one-hot encoded form.
- y_pred: Predicted probabilities for each class.
- alpha: Array of weighting factors for each class.
- gamma: Focusing parameter for modulating the loss (default: 2.0).
- epsilon: Small constant to avoid numerical instability.

Returns:
- The mean categorical focal cross-entropy loss.

>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
>>> alpha = np.array([0.6, 0.2, 0.7])
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
0.0025966118981496423

>>> true_labels = np.array([[0, 1, 0], [0, 0, 1]])
>>> pred_probs = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
>>> alpha = np.array([0.25, 0.25, 0.25])
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
0.23315276982014324

>>> true_labels = np.array([[1, 0], [0, 1]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_cross_entropy(true_labels, pred_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same shape.

>>> true_labels = np.array([[2, 0, 1], [1, 0, 0]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
Traceback (most recent call last):
...
ValueError: y_true must be one-hot encoded.

>>> true_labels = np.array([[1, 0, 1], [1, 0, 0]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
Traceback (most recent call last):
...
ValueError: y_true must be one-hot encoded.

>>> true_labels = np.array([[1, 0, 0], [0, 1, 0]])
>>> pred_probs = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
Traceback (most recent call last):
...
ValueError: Predicted probabilities must sum to approximately 1.

>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
>>> alpha = np.array([0.6, 0.2])
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
Traceback (most recent call last):
...
ValueError: Length of alpha must match the number of classes.
"""
if y_true.shape != y_pred.shape:
raise ValueError("Shape of y_true and y_pred must be the same.")

if alpha is None:
alpha = np.ones(y_true.shape[1])

if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
raise ValueError("y_true must be one-hot encoded.")

if len(alpha) != y_true.shape[1]:
raise ValueError("Length of alpha must match the number of classes.")

if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
raise ValueError("Predicted probabilities must sum to approximately 1.")

# Clip predicted probabilities to avoid log(0)
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)

# Calculate loss for each class and sum across classes
cfce_loss = -np.sum(
alpha * np.power(1 - y_pred, gamma) * y_true * np.log(y_pred), axis=1
)

return np.mean(cfce_loss)


def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the mean hinge loss for between true labels and predicted probabilities
Expand Down