Skip to content

[pull] master from TheAlgorithms:master #68

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Dec 28, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Fix Gaussian elimination pivoting (TheAlgorithms#11393)
* updating DIRECTORY.md

* Fix Gaussian elimination pivoting

* Fix review issues

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: MaximSmolskiy <MaximSmolskiy@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Dec 28, 2024
commit 929b7dc057cd56f90b260cd665fb67886bcadeea
39 changes: 16 additions & 23 deletions linear_algebra/src/gaussian_elimination_pivoting.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,40 +22,33 @@ def solve_linear_system(matrix: np.ndarray) -> np.ndarray:
>>> solution = solve_linear_system(np.column_stack((A, B)))
>>> np.allclose(solution, np.array([2., 3., -1.]))
True
>>> solve_linear_system(np.array([[0, 0], [0, 0]], dtype=float))
array([nan, nan])
>>> solve_linear_system(np.array([[0, 0, 0]], dtype=float))
Traceback (most recent call last):
...
ValueError: Matrix is not square
>>> solve_linear_system(np.array([[0, 0, 0], [0, 0, 0]], dtype=float))
Traceback (most recent call last):
...
ValueError: Matrix is singular
"""
ab = np.copy(matrix)
num_of_rows = ab.shape[0]
num_of_columns = ab.shape[1] - 1
x_lst: list[float] = []

# Lead element search
for column_num in range(num_of_rows):
for i in range(column_num, num_of_columns):
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
ab[[column_num, i]] = ab[[i, column_num]]
if ab[column_num, column_num] == 0.0:
raise ValueError("Matrix is not correct")
else:
pass
if column_num != 0:
for i in range(column_num, num_of_rows):
ab[i, :] -= (
ab[i, column_num - 1]
/ ab[column_num - 1, column_num - 1]
* ab[column_num - 1, :]
)
if num_of_rows != num_of_columns:
raise ValueError("Matrix is not square")

# Upper triangular matrix
for column_num in range(num_of_rows):
# Lead element search
for i in range(column_num, num_of_columns):
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
ab[[column_num, i]] = ab[[i, column_num]]
if ab[column_num, column_num] == 0.0:
raise ValueError("Matrix is not correct")
else:
pass

# Upper triangular matrix
if abs(ab[column_num, column_num]) < 1e-8:
raise ValueError("Matrix is singular")

if column_num != 0:
for i in range(column_num, num_of_rows):
ab[i, :] -= (
Expand Down