Skip to content

[pull] master from TheAlgorithms:master #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
* [Binary Search Tree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/binary_search_tree.cpp)
* [Binary Search Tree2](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/binary_search_tree2.cpp)
* [Binaryheap](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/binaryheap.cpp)
* [Bloom Filter](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/bloom_filter.cpp)
* [Circular Queue Using Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/circular_queue_using_linked_list.cpp)
* Cll
* [Cll](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/cll/cll.cpp)
Expand Down
291 changes: 291 additions & 0 deletions data_structures/bloom_filter.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,291 @@
/**
* @file
* @brief [Bloom Filter](https://en.wikipedia.org/wiki/Bloom_filter)
* generic implementation in C++
* @details A Bloom filter is a space-efficient probabilistic data structure,
* a query returns either "possibly in set" or "definitely not in set".
*
* More generally, fewer than 10 bits per element are required for a 1% false
* positive probability, independent of the size or number of elements in the
* set.
*
* It helps us to not make an "expensive operations", like disk IO - we can
* use bloom filter to check incoming request, and with a good probability
* get an answer of bloom filter, that we don't need to make our "expensive
* operation"
*
*
* [Very good use case example](https://stackoverflow.com/a/30247022)
*
* Basic bloom filter doesn't support deleting of elements, so
* we don't need to implement deletion in bloom filter and bitset in our case.
* @author [DanArmor](https://github.com/DanArmor)
*/

#include <cassert> /// for assert
#include <functional> /// for list of hash functions for bloom filter constructor
#include <initializer_list> /// for initializer_list for bloom filter constructor
#include <string> /// for testing on strings
#include <vector> /// for std::vector
#include <iostream> /// for IO operations

/**
* @namespace data_structures
* @brief Data Structures algorithms
*/
namespace data_structures {
/**
* @brief Simple bitset implementation for bloom filter
*/
class Bitset {
private:
std::vector<std::size_t> data; ///< short info of this variable
static const std::size_t blockSize =
sizeof(std::size_t); ///< size of integer type, that we are using in
///< our bitset
public:
explicit Bitset(std::size_t);
std::size_t size();
void add(std::size_t);
bool contains(std::size_t);
};

/**
* @brief Utility function to return the size of the inner array
* @returns the size of inner array
*/
std::size_t Bitset::size() { return data.size(); }

/**
* @brief BitSet class constructor
* @param initSize amount of blocks, each contain sizeof(std::size_t) bits
*/
Bitset::Bitset(std::size_t initSize) : data(initSize) {}

/**
* @brief Turn bit on position x to 1s
*
* @param x position to turn bit on
* @returns void
*/
void Bitset::add(std::size_t x) {
std::size_t blockIndex = x / blockSize;
if (blockIndex >= data.size()) {
data.resize(blockIndex + 1);
}
data[blockIndex] |= 1 << (x % blockSize);
}

/**
* @brief Doest bitset contains element x
*
* @param x position in bitset to check
* @returns true if bit position x is 1
* @returns false if bit position x is 0
*/
bool Bitset::contains(std::size_t x) {
std::size_t blockIndex = x / blockSize;
if (blockIndex >= data.size()) {
return false;
}
return data[blockIndex] & (1 << (x % blockSize));
}

/**
* @brief Bloom filter template class
* @tparam T type of elements that we need to filter
*/
template <typename T>
class BloomFilter {
private:
Bitset set; ///< inner bitset for elements
std::vector<std::function<std::size_t(T)>>
hashFunks; ///< hash functions for T type

public:
BloomFilter(std::size_t,
std::initializer_list<std::function<std::size_t(T)>>);
void add(T);
bool contains(T);
};

/**
* @brief Constructor for Bloom filter
*
* @tparam T type of elements that we need to filter
* @param size initial size of Bloom filter
* @param funks hash functions for T type
* @returns none
*/
template <typename T>
BloomFilter<T>::BloomFilter(
std::size_t size,
std::initializer_list<std::function<std::size_t(T)>> funks)
: set(size), hashFunks(funks) {}

/**
* @brief Add function for Bloom filter
*
* @tparam T type of elements that we need to filter
* @param x element to add to filter
* @returns void
*/
template <typename T>
void BloomFilter<T>::add(T x) {
for (std::size_t i = 0; i < hashFunks.size(); i++) {
set.add(hashFunks[i](x) % (sizeof(std::size_t) * set.size()));
}
}

/**
* @brief Check element function for Bloom filter
*
* @tparam T type of elements that we need to filter
* @param x element to check in filter
* @return true if the element probably appears in the filter
* @return false if the element certainly does not appear in the filter
*/
template <typename T>
bool BloomFilter<T>::contains(T x) {
for (std::size_t i = 0; i < hashFunks.size(); i++) {
if (set.contains(hashFunks[i](x) %
(sizeof(std::size_t) * set.size())) == false) {
return false;
}
}
return true;
}

/**
* @brief [Function djb2](http://www.cse.yorku.ca/~oz/hash.html)
* to get hash for the given string.
*
* @param s string to get hash from
* @returns hash for a string
*/
static std::size_t hashDJB2(std::string const& s) {
std::size_t hash = 5381;
for (char c : s) {
hash = ((hash << 5) + hash) + c;
}
return hash;
}

/**
* @brief [Hash
* function](https://stackoverflow.com/questions/8317508/hash-function-for-a-string),
* to get hash for the given string.
*
* @param s string to get hash from
* @returns hash for the given string
*/
static std::size_t hashStr(std::string const& s) {
std::size_t hash = 37;
std::size_t primeNum1 = 54059;
std::size_t primeNum2 = 76963;
for (char c : s) {
hash = (hash * primeNum1) ^ (c * primeNum2);
}
return hash;
}

/**
* @brief [Hash function for
* test](https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key)
*
* @param x to get hash from
* @returns hash for the `x` parameter
*/
std::size_t hashInt_1(int x) {
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = (x >> 16) ^ x;
return x;
}

/**
* @brief [Hash function for
* test](https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key)
*
* @param x to get hash from
* @returns hash for the `x` parameter
*/
std::size_t hashInt_2(int x) {
auto y = static_cast<std::size_t>(x);
y = (y ^ (y >> 30)) * static_cast<std::size_t>(0xbf58476d1ce4e5b9);
y = (y ^ (y >> 27)) * static_cast<std::size_t>(0x94d049bb133111eb);
y = y ^ (y >> 31);
return y;
}
} // namespace data_structures

/**
* @brief Test for bloom filter with string as generic type
* @returns void
*/
static void test_bloom_filter_string() {
data_structures::BloomFilter<std::string> filter(
10, {data_structures::hashDJB2, data_structures::hashStr});
std::vector<std::string> toCheck{"hello", "world", "!"};
std::vector<std::string> toFalse{"false", "world2", "!!!"};
for (auto& x : toCheck) {
filter.add(x);
}
for (auto& x : toFalse) {
assert(filter.contains(x) == false);
}
for (auto& x : toCheck) {
assert(filter.contains(x));
}
}

/**
* @brief Test for bloom filter with int as generic type
* @returns void
*/
static void test_bloom_filter_int() {
data_structures::BloomFilter<int> filter(
20, {data_structures::hashInt_1, data_structures::hashInt_2});
std::vector<int> toCheck{100, 200, 300, 50};
std::vector<int> toFalse{1, 2, 3, 4, 5, 6, 7, 8};
for (int x : toCheck) {
filter.add(x);
}
for (int x : toFalse) {
assert(filter.contains(x) == false);
}
for (int x : toCheck) {
assert(filter.contains(x));
}
}

/**
* @brief Test for bitset
*
* @returns void
*/
static void test_bitset() {
data_structures::Bitset set(2);
std::vector<std::size_t> toCheck{0, 1, 5, 8, 63, 64, 67, 127};
for (auto x : toCheck) {
set.add(x);
assert(set.contains(x));
}
assert(set.contains(128) == false);
assert(set.contains(256) == false);
}

/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
// run self-test implementations

test_bitset(); // run test for bitset, because bloom filter is depending on it
test_bloom_filter_string();
test_bloom_filter_int();

std::cout << "All tests have successfully passed!\n";
return 0;
}