|
56 | 56 |
|
57 | 57 | <!-- 这里可写通用的实现逻辑 -->
|
58 | 58 |
|
| 59 | +动态规划。 |
| 60 | + |
59 | 61 | <!-- tabs:start -->
|
60 | 62 |
|
61 | 63 | ### **Python3**
|
62 | 64 |
|
63 | 65 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
64 | 66 |
|
65 | 67 | ```python
|
66 |
| - |
| 68 | +class Solution: |
| 69 | + def minFallingPathSum(self, matrix: List[List[int]]) -> int: |
| 70 | + n = len(matrix) |
| 71 | + for i in range(1, n): |
| 72 | + for j in range(n): |
| 73 | + mi = matrix[i - 1][j] |
| 74 | + if j > 0: |
| 75 | + mi = min(mi, matrix[i - 1][j - 1]) |
| 76 | + if j < n - 1: |
| 77 | + mi = min(mi, matrix[i - 1][j + 1]) |
| 78 | + matrix[i][j] += mi |
| 79 | + return min(matrix[n - 1]) |
67 | 80 | ```
|
68 | 81 |
|
69 | 82 | ### **Java**
|
70 | 83 |
|
71 | 84 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
72 | 85 |
|
73 | 86 | ```java
|
| 87 | +class Solution { |
| 88 | + public int minFallingPathSum(int[][] matrix) { |
| 89 | + int n = matrix.length; |
| 90 | + for (int i = 1; i < n; ++i) { |
| 91 | + for (int j = 0; j < n; ++j) { |
| 92 | + int mi = matrix[i - 1][j]; |
| 93 | + if (j > 0) { |
| 94 | + mi = Math.min(mi, matrix[i - 1][j - 1]); |
| 95 | + } |
| 96 | + if (j < n - 1) { |
| 97 | + mi = Math.min(mi, matrix[i - 1][j + 1]); |
| 98 | + } |
| 99 | + matrix[i][j] += mi; |
| 100 | + } |
| 101 | + } |
| 102 | + int res = Integer.MAX_VALUE; |
| 103 | + for (int j = 0; j < n; ++j) { |
| 104 | + res = Math.min(res, matrix[n - 1][j]); |
| 105 | + } |
| 106 | + return res; |
| 107 | + } |
| 108 | +} |
| 109 | +``` |
| 110 | + |
| 111 | +### **C++** |
| 112 | + |
| 113 | +```cpp |
| 114 | +class Solution { |
| 115 | +public: |
| 116 | + int minFallingPathSum(vector<vector<int>>& matrix) { |
| 117 | + int n = matrix.size(); |
| 118 | + for (int i = 1; i < n; ++i) { |
| 119 | + for (int j = 0; j < n; ++j) { |
| 120 | + int mi = matrix[i - 1][j]; |
| 121 | + if (j > 0) mi = min(mi, matrix[i - 1][j - 1]); |
| 122 | + if (j < n - 1) mi = min(mi, matrix[i - 1][j + 1]); |
| 123 | + matrix[i][j] += mi; |
| 124 | + } |
| 125 | + } |
| 126 | + int res = INT_MAX; |
| 127 | + for (int j = 0; j < n; ++j) { |
| 128 | + res = min(res, matrix[n - 1][j]); |
| 129 | + } |
| 130 | + return res; |
| 131 | + } |
| 132 | +}; |
| 133 | +``` |
74 | 134 |
|
| 135 | +### **Go** |
| 136 | +
|
| 137 | +```go |
| 138 | +func minFallingPathSum(matrix [][]int) int { |
| 139 | + n := len(matrix) |
| 140 | + for i := 1; i < n; i++ { |
| 141 | + for j := 0; j < n; j++ { |
| 142 | + mi := matrix[i - 1][j] |
| 143 | + if j > 0 && mi > matrix[i - 1][j - 1] { |
| 144 | + mi = matrix[i - 1][j - 1] |
| 145 | + } |
| 146 | + if j < n - 1 && mi > matrix[i - 1][j + 1] { |
| 147 | + mi = matrix[i - 1][j + 1] |
| 148 | + } |
| 149 | + matrix[i][j] += mi |
| 150 | + } |
| 151 | + } |
| 152 | + res := 10000 |
| 153 | + for j := 0; j < n; j++ { |
| 154 | + if res > matrix[n - 1][j] { |
| 155 | + res = matrix[n - 1][j] |
| 156 | + } |
| 157 | + } |
| 158 | + return res |
| 159 | +} |
75 | 160 | ```
|
76 | 161 |
|
77 | 162 | ### **...**
|
|
0 commit comments