给定两个非空二叉树 s 和 t,检验 s 中是否包含和 t 具有相同结构和节点值的子树。s 的一个子树包括 s 的一个节点和这个节点的所有子孙。s 也可以看做它自身的一棵子树。
示例 1:
给定的树 s:
3 / \ 4 5 / \ 1 2
给定的树 t:
4 / \ 1 2
返回 true,因为 t 与 s 的一个子树拥有相同的结构和节点值。
示例 2:
给定的树 s:
3 / \ 4 5 / \ 1 2 / 0
给定的树 t:
4 / \ 1 2
返回 false。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool:
def dfs(root1, root2):
if root1 is None and root2 is None:
return True
if root1 is None or root2 is None:
return False
return root1.val == root2.val and dfs(root1.left, root2.left) and dfs(root1.right, root2.right)
if root is None:
return False
return dfs(root, subRoot) or self.isSubtree(root.left, subRoot) or self.isSubtree(root.right, subRoot)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if (root == null) {
return false;
}
return dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
}
private boolean dfs(TreeNode root1, TreeNode root2) {
if (root1 == null && root2 == null) {
return true;
}
if (root1 == null || root2 == null) {
return false;
}
return root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSubtree(TreeNode* root, TreeNode* subRoot) {
if (!root) return 0;
return dfs(root, subRoot) || isSubtree(root->left, subRoot) || isSubtree(root->right, subRoot);
}
bool dfs(TreeNode* root1, TreeNode* root2) {
if (!root1 && !root2) return 1;
if (!root1 || !root2) return 0;
return root1->val == root2->val && dfs(root1->left, root2->left) && dfs(root1->right, root2->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
if root == nil {
return false
}
var dfs func(root1, root2 *TreeNode) bool
dfs = func(root1, root2 *TreeNode) bool {
if root1 == nil && root2 == nil {
return true
}
if root1 == nil || root2 == nil {
return false
}
return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)
}
return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} subRoot
* @return {boolean}
*/
var isSubtree = function (root, subRoot) {
if (!root) return false;
let dfs = function (root1, root2) {
if (!root1 && !root2) {
return true;
}
if (!root1 || !root2) {
return false;
}
return (
root1.val == root2.val &&
dfs(root1.left, root2.left) &&
dfs(root1.right, root2.right)
);
};
return (
dfs(root, subRoot) ||
isSubtree(root.left, subRoot) ||
isSubtree(root.right, subRoot)
);
};