forked from rescript-lang/rescript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmd.mli
executable file
·55 lines (42 loc) · 2.26 KB
/
md.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
(**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2010 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(** Minimum Degree algorithm
Based on the article:
The Minimum Degree Heuristic and the Minimal Triangulation Process
by A. Berry, Pinar Heggernes & Geneviève Simonet.
@author Matthieu Sozeau
@author Pierre-Loic Garoche *)
module P(G : Sig.P) : sig
type edgeset = (G.V.t * G.V.t) list
val md : G.t -> G.t * edgeset * G.V.t list
(** [md g] return a tuple [(g', e, o)] where [g'] is
a triangulated graph, [e] is the triangulation of [g] and
[o] is a perfect elimination order of [g'] *)
val triangulate : G.t -> G.t
(** [triangulate g] return the graph [g'] produced by applying
miminum degree to [g]. *)
end
module I(G : Sig.I) : sig
type edgeset = (G.V.t * G.V.t) list
val md : G.t -> G.t * edgeset * G.V.t list
(** [md g] return a tuple [(g', e, o)] where [g'] is
a triangulated graph, [e] is the triangulation of [g] and
[o] is a perfect elimination order of [g'] *)
val triangulate : G.t -> G.t
(** [triangulate g] return the graph [g'] produced by applying
miminum degree to [g]. *)
end