|
56 | 56 |
|
57 | 57 | <!-- 这里可写通用的实现逻辑 -->
|
58 | 58 |
|
| 59 | +**方法一:记忆化搜索** |
| 60 | + |
| 61 | +我们设计一个函数 $dfs(i)$,表示 $i$ 个人的握手方案数。答案为 $dfs(n)$。 |
| 62 | + |
| 63 | +函数 $dfs(i)$ 的执行逻辑如下: |
| 64 | + |
| 65 | +- 如果 $i \lt 2$,那么只有一种握手方案,即不握手,返回 $1$。 |
| 66 | +- 否则,我们可以枚举第一个人与谁握手,记剩余的左边的人数为 $l$,右边的人数为 $r=i-l-2$,那么有 $dfs(i)= \sum_{l=0}^{i-1} dfs(l) \times dfs(r)$。 |
| 67 | + |
| 68 | +为了避免重复计算,我们使用记忆化搜索的方法。 |
| 69 | + |
| 70 | +时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 为 $numPeople$ 的大小。 |
| 71 | + |
59 | 72 | <!-- tabs:start -->
|
60 | 73 |
|
61 | 74 | ### **Python3**
|
62 | 75 |
|
63 | 76 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
64 | 77 |
|
65 | 78 | ```python
|
66 |
| - |
| 79 | +class Solution: |
| 80 | + def numberOfWays(self, numPeople: int) -> int: |
| 81 | + @cache |
| 82 | + def dfs(i: int) -> int: |
| 83 | + if i < 2: |
| 84 | + return 1 |
| 85 | + ans = 0 |
| 86 | + for l in range(0, i, 2): |
| 87 | + r = i - l - 2 |
| 88 | + ans += dfs(l) * dfs(r) |
| 89 | + ans %= mod |
| 90 | + return ans |
| 91 | + |
| 92 | + mod = 10**9 + 7 |
| 93 | + return dfs(numPeople) |
67 | 94 | ```
|
68 | 95 |
|
69 | 96 | ### **Java**
|
70 | 97 |
|
71 | 98 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
72 | 99 |
|
73 | 100 | ```java
|
| 101 | +class Solution { |
| 102 | + private int[] f; |
| 103 | + private final int mod = (int) 1e9 + 7; |
| 104 | + |
| 105 | + public int numberOfWays(int numPeople) { |
| 106 | + f = new int[numPeople + 1]; |
| 107 | + return dfs(numPeople); |
| 108 | + } |
| 109 | + |
| 110 | + private int dfs(int i) { |
| 111 | + if (i < 2) { |
| 112 | + return 1; |
| 113 | + } |
| 114 | + if (f[i] != 0) { |
| 115 | + return f[i]; |
| 116 | + } |
| 117 | + for (int l = 0; l < i; l += 2) { |
| 118 | + int r = i - l - 2; |
| 119 | + f[i] = (int) ((f[i] + (1L * dfs(l) * dfs(r) % mod)) % mod); |
| 120 | + } |
| 121 | + return f[i]; |
| 122 | + } |
| 123 | +} |
| 124 | +``` |
| 125 | + |
| 126 | +### **C++** |
| 127 | + |
| 128 | +```cpp |
| 129 | +class Solution { |
| 130 | +public: |
| 131 | + int numberOfWays(int numPeople) { |
| 132 | + const int mod = 1e9 + 7; |
| 133 | + int f[numPeople + 1]; |
| 134 | + memset(f, 0, sizeof(f)); |
| 135 | + function<int(int)> dfs = [&](int i) { |
| 136 | + if (i < 2) { |
| 137 | + return 1; |
| 138 | + } |
| 139 | + if (f[i]) { |
| 140 | + return f[i]; |
| 141 | + } |
| 142 | + for (int l = 0; l < i; l += 2) { |
| 143 | + int r = i - l - 2; |
| 144 | + f[i] = (f[i] + 1LL * dfs(l) * dfs(r) % mod) % mod; |
| 145 | + } |
| 146 | + return f[i]; |
| 147 | + }; |
| 148 | + return dfs(numPeople); |
| 149 | + } |
| 150 | +}; |
| 151 | +``` |
| 152 | +
|
| 153 | +### **Go** |
| 154 | +
|
| 155 | +```go |
| 156 | +func numberOfWays(numPeople int) int { |
| 157 | + const mod int = 1e9 + 7 |
| 158 | + f := make([]int, numPeople+1) |
| 159 | + var dfs func(int) int |
| 160 | + dfs = func(i int) int { |
| 161 | + if i < 2 { |
| 162 | + return 1 |
| 163 | + } |
| 164 | + if f[i] != 0 { |
| 165 | + return f[i] |
| 166 | + } |
| 167 | + for l := 0; l < i; l += 2 { |
| 168 | + r := i - l - 2 |
| 169 | + f[i] = (f[i] + dfs(l)*dfs(r)) % mod |
| 170 | + } |
| 171 | + return f[i] |
| 172 | + } |
| 173 | + return dfs(numPeople) |
| 174 | +} |
| 175 | +``` |
74 | 176 |
|
| 177 | +### **TypeScript** |
| 178 | + |
| 179 | +```ts |
| 180 | +function numberOfWays(numPeople: number): number { |
| 181 | + const mod = 10 ** 9 + 7; |
| 182 | + const f: number[] = Array(numPeople + 1).fill(0); |
| 183 | + const dfs = (i: number): number => { |
| 184 | + if (i < 2) { |
| 185 | + return 1; |
| 186 | + } |
| 187 | + if (f[i] !== 0) { |
| 188 | + return f[i]; |
| 189 | + } |
| 190 | + for (let l = 0; l < i; l += 2) { |
| 191 | + const r = i - l - 2; |
| 192 | + f[i] += Number((BigInt(dfs(l)) * BigInt(dfs(r))) % BigInt(mod)); |
| 193 | + f[i] %= mod; |
| 194 | + } |
| 195 | + return f[i]; |
| 196 | + }; |
| 197 | + return dfs(numPeople); |
| 198 | +} |
75 | 199 | ```
|
76 | 200 |
|
77 | 201 | ### **...**
|
|
0 commit comments