|
91 | 91 |
|
92 | 92 | <!-- 这里可写通用的实现逻辑 -->
|
93 | 93 |
|
| 94 | +**方法一:动态规划 + 单调队列优化** |
| 95 | + |
| 96 | +我们定义 $f[i]$ 表示把前 $i$ 个箱子从仓库运送到相应码头的最少行程数,那么答案就是 $f[n]$。 |
| 97 | + |
| 98 | +箱子需要按数组顺序运输,每一次运输,卡车会按顺序取出连续的几个箱子,然后依次送往对应的码头,全部送达之后,又回到了仓库。 |
| 99 | + |
| 100 | +因此,我们可以枚举上一次运输的最后一个箱子的编号 $j$,那么 $f[i]$ 就可以从 $f[j]$ 转移而来,转移的时候,我们需要考虑以下几个问题: |
| 101 | + |
| 102 | +- 从 $f[j]$ 转移过来的时候,卡车上的箱子数量不能超过 $maxBoxes$ |
| 103 | +- 从 $f[j]$ 转移过来的时候,卡车上的箱子总重量不能超过 $maxWeight$ |
| 104 | + |
| 105 | +状态转移方程为: |
| 106 | + |
| 107 | +$$ |
| 108 | +f[i] = \min_{j \in [i - maxBoxes, i - 1]} \left(f[j] + \sum_{k = j + 1}^i \text{cost}(k)\right) |
| 109 | +$$ |
| 110 | + |
| 111 | +其中 $\sum_{k = j + 1}^i \text{cost}(k)$ 表示通过一次运输,把 $[j+1,..i]$ 这些箱子送往对应的码头所需要的行程数。这部分行程数可以通过前缀和快速计算出来。 |
| 112 | + |
| 113 | +简单举个例子,假设我们取出了 $1, 2, 3$ 这三个箱子,需要送往 $4, 4, 5$ 这三个码头,那么我们首先要从仓库到 $4$ 号码头,然后再从 $4$ 号码头到 $5$ 号码头,最后再从 $5$ 号码头回到仓库。可以发现,从仓库到码头,以及从码头到仓库,需要花费 $2$ 趟行程,而从码头到码头的行程数,取决于相邻两个码头是否相同,如果不相同,那么行程数会增加 $1$,否则不变。因此,我们可以通过前缀和,计算出码头之间的行程数,再加上首尾两趟行程,就能把 $[j+1,..i]$ 这些箱子送往对应的码头所需要的行程数计算出来。 |
| 114 | + |
| 115 | +代码实现如下: |
| 116 | + |
| 117 | +```python |
| 118 | +# 33/39 个通过测试用例,超出时间限制 |
| 119 | +class Solution: |
| 120 | + def boxDelivering(self, boxes: List[List[int]], portsCount: int, maxBoxes: int, maxWeight: int) -> int: |
| 121 | + n = len(boxes) |
| 122 | + ws = list(accumulate((box[1] for box in boxes), initial=0)) |
| 123 | + c = [int(a != b) for a, b in pairwise(box[0] for box in boxes)] |
| 124 | + cs = list(accumulate(c, initial=0)) |
| 125 | + f = [inf] * (n + 1) |
| 126 | + f[0] = 0 |
| 127 | + for i in range(1, n + 1): |
| 128 | + for j in range(max(0, i - maxBoxes), i): |
| 129 | + if ws[i] - ws[j] <= maxWeight: |
| 130 | + f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2) |
| 131 | + return f[n] |
| 132 | +``` |
| 133 | + |
| 134 | +```java |
| 135 | +// 35/39 个通过测试用例,超出时间限制 |
| 136 | +class Solution { |
| 137 | + public int boxDelivering(int[][] boxes, int portsCount, int maxBoxes, int maxWeight) { |
| 138 | + int n = boxes.length; |
| 139 | + long[] ws = new long[n + 1]; |
| 140 | + int[] cs = new int[n]; |
| 141 | + for (int i = 0; i < n; ++i) { |
| 142 | + int p = boxes[i][0], w = boxes[i][1]; |
| 143 | + ws[i + 1] = ws[i] + w; |
| 144 | + if (i < n - 1) { |
| 145 | + cs[i + 1] = cs[i] + (p != boxes[i + 1][0] ? 1 : 0); |
| 146 | + } |
| 147 | + } |
| 148 | + int[] f = new int[n + 1]; |
| 149 | + Arrays.fill(f, 1 << 30); |
| 150 | + f[0] = 0; |
| 151 | + for (int i = 1; i <= n; ++i) { |
| 152 | + for (int j = Math.max(0, i - maxBoxes); j < i; ++j) { |
| 153 | + if (ws[i] - ws[j] <= maxWeight) { |
| 154 | + f[i] = Math.min(f[i], f[j] + cs[i - 1] - cs[j] + 2); |
| 155 | + } |
| 156 | + } |
| 157 | + } |
| 158 | + return f[n]; |
| 159 | + } |
| 160 | +} |
| 161 | +``` |
| 162 | + |
| 163 | +```cpp |
| 164 | +// 35/39 个通过测试用例,超出时间限制 |
| 165 | +class Solution { |
| 166 | +public: |
| 167 | + int boxDelivering(vector<vector<int>>& boxes, int portsCount, int maxBoxes, int maxWeight) { |
| 168 | + int n = boxes.size(); |
| 169 | + long ws[n + 1]; |
| 170 | + int cs[n]; |
| 171 | + ws[0] = cs[0] = 0; |
| 172 | + for (int i = 0; i < n; ++i) { |
| 173 | + int p = boxes[i][0], w = boxes[i][1]; |
| 174 | + ws[i + 1] = ws[i] + w; |
| 175 | + if (i < n - 1) cs[i + 1] = cs[i] + (p != boxes[i + 1][0]); |
| 176 | + } |
| 177 | + int f[n + 1]; |
| 178 | + memset(f, 0x3f, sizeof f); |
| 179 | + f[0] = 0; |
| 180 | + for (int i = 1; i <= n; ++i) { |
| 181 | + for (int j = max(0, i - maxBoxes); j < i; ++j) { |
| 182 | + if (ws[i] - ws[j] <= maxWeight) { |
| 183 | + f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2); |
| 184 | + } |
| 185 | + } |
| 186 | + } |
| 187 | + return f[n]; |
| 188 | + } |
| 189 | +}; |
| 190 | +``` |
| 191 | +
|
| 192 | +```go |
| 193 | +// 35/39 个通过测试用例,超出时间限制 |
| 194 | +func boxDelivering(boxes [][]int, portsCount int, maxBoxes int, maxWeight int) int { |
| 195 | + n := len(boxes) |
| 196 | + ws := make([]int, n+1) |
| 197 | + cs := make([]int, n) |
| 198 | + for i, box := range boxes { |
| 199 | + p, w := box[0], box[1] |
| 200 | + ws[i+1] = ws[i] + w |
| 201 | + if i < n-1 { |
| 202 | + t := 0 |
| 203 | + if p != boxes[i+1][0] { |
| 204 | + t++ |
| 205 | + } |
| 206 | + cs[i+1] = cs[i] + t |
| 207 | + } |
| 208 | + } |
| 209 | + f := make([]int, n+1) |
| 210 | + for i := 1; i <= n; i++ { |
| 211 | + f[i] = 1 << 30 |
| 212 | + for j := max(0, i-maxBoxes); j < i; j++ { |
| 213 | + if ws[i]-ws[j] <= maxWeight { |
| 214 | + f[i] = min(f[i], f[j]+cs[i-1]-cs[j]+2) |
| 215 | + } |
| 216 | + } |
| 217 | + } |
| 218 | + return f[n] |
| 219 | +} |
| 220 | +
|
| 221 | +func min(a, b int) int { |
| 222 | + if a < b { |
| 223 | + return a |
| 224 | + } |
| 225 | + return b |
| 226 | +} |
| 227 | +
|
| 228 | +func max(a, b int) int { |
| 229 | + if a > b { |
| 230 | + return a |
| 231 | + } |
| 232 | + return b |
| 233 | +} |
| 234 | +``` |
| 235 | + |
| 236 | +本题数据规模达到 $10^5$,而以上代码的时间复杂度为 $O(n^2)$,会超出时间限制。我们仔细观察: |
| 237 | + |
| 238 | +$$ |
| 239 | +f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2) |
| 240 | +$$ |
| 241 | + |
| 242 | +实际上我们是要在 $[i-maxBoxes,..i-1]$ 这个窗口内找到一个 $j$,使得 $f[j] - cs[j]$ 的值最小,求滑动窗口的最小值,一种常用的做法是使用单调队列,可以在 $O(1)$ 时间内获取到满足条件的最小值。 |
| 243 | + |
| 244 | +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是题目中箱子的数量。 |
| 245 | + |
94 | 246 | <!-- tabs:start -->
|
95 | 247 |
|
96 | 248 | ### **Python3**
|
97 | 249 |
|
98 | 250 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
99 | 251 |
|
100 | 252 | ```python
|
101 |
| - |
| 253 | +class Solution: |
| 254 | + def boxDelivering( |
| 255 | + self, boxes: List[List[int]], portsCount: int, maxBoxes: int, maxWeight: int |
| 256 | + ) -> int: |
| 257 | + n = len(boxes) |
| 258 | + ws = list(accumulate((box[1] for box in boxes), initial=0)) |
| 259 | + c = [int(a != b) for a, b in pairwise(box[0] for box in boxes)] |
| 260 | + cs = list(accumulate(c, initial=0)) |
| 261 | + f = [0] * (n + 1) |
| 262 | + q = deque([0]) |
| 263 | + for i in range(1, n + 1): |
| 264 | + while q and (i - q[0] > maxBoxes or ws[i] - ws[q[0]] > maxWeight): |
| 265 | + q.popleft() |
| 266 | + if q: |
| 267 | + f[i] = cs[i - 1] + f[q[0]] - cs[q[0]] + 2 |
| 268 | + if i < n: |
| 269 | + while q and f[q[-1]] - cs[q[-1]] >= f[i] - cs[i]: |
| 270 | + q.pop() |
| 271 | + q.append(i) |
| 272 | + return f[n] |
102 | 273 | ```
|
103 | 274 |
|
104 | 275 | ### **Java**
|
105 | 276 |
|
106 | 277 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
107 | 278 |
|
108 | 279 | ```java
|
| 280 | +class Solution { |
| 281 | + public int boxDelivering(int[][] boxes, int portsCount, int maxBoxes, int maxWeight) { |
| 282 | + int n = boxes.length; |
| 283 | + long[] ws = new long[n + 1]; |
| 284 | + int[] cs = new int[n]; |
| 285 | + for (int i = 0; i < n; ++i) { |
| 286 | + int p = boxes[i][0], w = boxes[i][1]; |
| 287 | + ws[i + 1] = ws[i] + w; |
| 288 | + if (i < n - 1) { |
| 289 | + cs[i + 1] = cs[i] + (p != boxes[i + 1][0] ? 1 : 0); |
| 290 | + } |
| 291 | + } |
| 292 | + int[] f = new int[n + 1]; |
| 293 | + Deque<Integer> q = new ArrayDeque<>(); |
| 294 | + q.offer(0); |
| 295 | + for (int i = 1; i <= n; ++i) { |
| 296 | + while (!q.isEmpty() && (i - q.peekFirst() > maxBoxes || ws[i] - ws[q.peekFirst()] > maxWeight)) { |
| 297 | + q.pollFirst(); |
| 298 | + } |
| 299 | + if (!q.isEmpty()) { |
| 300 | + f[i] = cs[i - 1] + f[q.peekFirst()] - cs[q.peekFirst()] + 2; |
| 301 | + } |
| 302 | + if (i < n) { |
| 303 | + while (!q.isEmpty() && f[q.peekLast()] - cs[q.peekLast()] >= f[i] - cs[i]) { |
| 304 | + q.pollLast(); |
| 305 | + } |
| 306 | + q.offer(i); |
| 307 | + } |
| 308 | + } |
| 309 | + return f[n]; |
| 310 | + } |
| 311 | +} |
| 312 | +``` |
| 313 | + |
| 314 | +### **C++** |
| 315 | + |
| 316 | +```cpp |
| 317 | +class Solution { |
| 318 | +public: |
| 319 | + int boxDelivering(vector<vector<int>>& boxes, int portsCount, int maxBoxes, int maxWeight) { |
| 320 | + int n = boxes.size(); |
| 321 | + long ws[n + 1]; |
| 322 | + int f[n + 1]; |
| 323 | + int cs[n]; |
| 324 | + ws[0] = cs[0] = f[0] = 0; |
| 325 | + for (int i = 0; i < n; ++i) { |
| 326 | + int p = boxes[i][0], w = boxes[i][1]; |
| 327 | + ws[i + 1] = ws[i] + w; |
| 328 | + if (i < n - 1) cs[i + 1] = cs[i] + (p != boxes[i + 1][0]); |
| 329 | + } |
| 330 | + deque<int> q{{0}}; |
| 331 | + for (int i = 1; i <= n; ++i) { |
| 332 | + while (!q.empty() && (i - q.front() > maxBoxes || ws[i] - ws[q.front()] > maxWeight)) q.pop_front(); |
| 333 | + if (!q.empty()) f[i] = cs[i - 1] + f[q.front()] - cs[q.front()] + 2; |
| 334 | + if (i < n) { |
| 335 | + while (!q.empty() && f[q.back()] - cs[q.back()] >= f[i] - cs[i]) q.pop_back(); |
| 336 | + q.push_back(i); |
| 337 | + } |
| 338 | + } |
| 339 | + return f[n]; |
| 340 | + } |
| 341 | +}; |
| 342 | +``` |
109 | 343 |
|
| 344 | +### **Go** |
| 345 | +
|
| 346 | +```go |
| 347 | +func boxDelivering(boxes [][]int, portsCount int, maxBoxes int, maxWeight int) int { |
| 348 | + n := len(boxes) |
| 349 | + ws := make([]int, n+1) |
| 350 | + cs := make([]int, n) |
| 351 | + for i, box := range boxes { |
| 352 | + p, w := box[0], box[1] |
| 353 | + ws[i+1] = ws[i] + w |
| 354 | + if i < n-1 { |
| 355 | + t := 0 |
| 356 | + if p != boxes[i+1][0] { |
| 357 | + t++ |
| 358 | + } |
| 359 | + cs[i+1] = cs[i] + t |
| 360 | + } |
| 361 | + } |
| 362 | + f := make([]int, n+1) |
| 363 | + q := []int{0} |
| 364 | + for i := 1; i <= n; i++ { |
| 365 | + for len(q) > 0 && (i-q[0] > maxBoxes || ws[i]-ws[q[0]] > maxWeight) { |
| 366 | + q = q[1:] |
| 367 | + } |
| 368 | + if len(q) > 0 { |
| 369 | + f[i] = cs[i-1] + f[q[0]] - cs[q[0]] + 2 |
| 370 | + } |
| 371 | + if i < n { |
| 372 | + for len(q) > 0 && f[q[len(q)-1]]-cs[q[len(q)-1]] >= f[i]-cs[i] { |
| 373 | + q = q[:len(q)-1] |
| 374 | + } |
| 375 | + q = append(q, i) |
| 376 | + } |
| 377 | + } |
| 378 | + return f[n] |
| 379 | +} |
110 | 380 | ```
|
111 | 381 |
|
112 | 382 | ### **...**
|
|
0 commit comments