Skip to content

Commit 8d1c046

Browse files
committed
feat: add solutions to lc problem: No.1687
No.1687.Delivering Boxes from Storage to Ports
1 parent b2046fe commit 8d1c046

File tree

6 files changed

+500
-2
lines changed

6 files changed

+500
-2
lines changed

Diff for: solution/1600-1699/1687.Delivering Boxes from Storage to Ports/README.md

+271-1
Original file line numberDiff line numberDiff line change
@@ -91,22 +91,292 @@
9191

9292
<!-- 这里可写通用的实现逻辑 -->
9393

94+
**方法一:动态规划 + 单调队列优化**
95+
96+
我们定义 $f[i]$ 表示把前 $i$ 个箱子从仓库运送到相应码头的最少行程数,那么答案就是 $f[n]$。
97+
98+
箱子需要按数组顺序运输,每一次运输,卡车会按顺序取出连续的几个箱子,然后依次送往对应的码头,全部送达之后,又回到了仓库。
99+
100+
因此,我们可以枚举上一次运输的最后一个箱子的编号 $j$,那么 $f[i]$ 就可以从 $f[j]$ 转移而来,转移的时候,我们需要考虑以下几个问题:
101+
102+
- 从 $f[j]$ 转移过来的时候,卡车上的箱子数量不能超过 $maxBoxes$
103+
- 从 $f[j]$ 转移过来的时候,卡车上的箱子总重量不能超过 $maxWeight$
104+
105+
状态转移方程为:
106+
107+
$$
108+
f[i] = \min_{j \in [i - maxBoxes, i - 1]} \left(f[j] + \sum_{k = j + 1}^i \text{cost}(k)\right)
109+
$$
110+
111+
其中 $\sum_{k = j + 1}^i \text{cost}(k)$ 表示通过一次运输,把 $[j+1,..i]$ 这些箱子送往对应的码头所需要的行程数。这部分行程数可以通过前缀和快速计算出来。
112+
113+
简单举个例子,假设我们取出了 $1, 2, 3$ 这三个箱子,需要送往 $4, 4, 5$ 这三个码头,那么我们首先要从仓库到 $4$ 号码头,然后再从 $4$ 号码头到 $5$ 号码头,最后再从 $5$ 号码头回到仓库。可以发现,从仓库到码头,以及从码头到仓库,需要花费 $2$ 趟行程,而从码头到码头的行程数,取决于相邻两个码头是否相同,如果不相同,那么行程数会增加 $1$,否则不变。因此,我们可以通过前缀和,计算出码头之间的行程数,再加上首尾两趟行程,就能把 $[j+1,..i]$ 这些箱子送往对应的码头所需要的行程数计算出来。
114+
115+
代码实现如下:
116+
117+
```python
118+
# 33/39 个通过测试用例,超出时间限制
119+
class Solution:
120+
def boxDelivering(self, boxes: List[List[int]], portsCount: int, maxBoxes: int, maxWeight: int) -> int:
121+
n = len(boxes)
122+
ws = list(accumulate((box[1] for box in boxes), initial=0))
123+
c = [int(a != b) for a, b in pairwise(box[0] for box in boxes)]
124+
cs = list(accumulate(c, initial=0))
125+
f = [inf] * (n + 1)
126+
f[0] = 0
127+
for i in range(1, n + 1):
128+
for j in range(max(0, i - maxBoxes), i):
129+
if ws[i] - ws[j] <= maxWeight:
130+
f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2)
131+
return f[n]
132+
```
133+
134+
```java
135+
// 35/39 个通过测试用例,超出时间限制
136+
class Solution {
137+
public int boxDelivering(int[][] boxes, int portsCount, int maxBoxes, int maxWeight) {
138+
int n = boxes.length;
139+
long[] ws = new long[n + 1];
140+
int[] cs = new int[n];
141+
for (int i = 0; i < n; ++i) {
142+
int p = boxes[i][0], w = boxes[i][1];
143+
ws[i + 1] = ws[i] + w;
144+
if (i < n - 1) {
145+
cs[i + 1] = cs[i] + (p != boxes[i + 1][0] ? 1 : 0);
146+
}
147+
}
148+
int[] f = new int[n + 1];
149+
Arrays.fill(f, 1 << 30);
150+
f[0] = 0;
151+
for (int i = 1; i <= n; ++i) {
152+
for (int j = Math.max(0, i - maxBoxes); j < i; ++j) {
153+
if (ws[i] - ws[j] <= maxWeight) {
154+
f[i] = Math.min(f[i], f[j] + cs[i - 1] - cs[j] + 2);
155+
}
156+
}
157+
}
158+
return f[n];
159+
}
160+
}
161+
```
162+
163+
```cpp
164+
// 35/39 个通过测试用例,超出时间限制
165+
class Solution {
166+
public:
167+
int boxDelivering(vector<vector<int>>& boxes, int portsCount, int maxBoxes, int maxWeight) {
168+
int n = boxes.size();
169+
long ws[n + 1];
170+
int cs[n];
171+
ws[0] = cs[0] = 0;
172+
for (int i = 0; i < n; ++i) {
173+
int p = boxes[i][0], w = boxes[i][1];
174+
ws[i + 1] = ws[i] + w;
175+
if (i < n - 1) cs[i + 1] = cs[i] + (p != boxes[i + 1][0]);
176+
}
177+
int f[n + 1];
178+
memset(f, 0x3f, sizeof f);
179+
f[0] = 0;
180+
for (int i = 1; i <= n; ++i) {
181+
for (int j = max(0, i - maxBoxes); j < i; ++j) {
182+
if (ws[i] - ws[j] <= maxWeight) {
183+
f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2);
184+
}
185+
}
186+
}
187+
return f[n];
188+
}
189+
};
190+
```
191+
192+
```go
193+
// 35/39 个通过测试用例,超出时间限制
194+
func boxDelivering(boxes [][]int, portsCount int, maxBoxes int, maxWeight int) int {
195+
n := len(boxes)
196+
ws := make([]int, n+1)
197+
cs := make([]int, n)
198+
for i, box := range boxes {
199+
p, w := box[0], box[1]
200+
ws[i+1] = ws[i] + w
201+
if i < n-1 {
202+
t := 0
203+
if p != boxes[i+1][0] {
204+
t++
205+
}
206+
cs[i+1] = cs[i] + t
207+
}
208+
}
209+
f := make([]int, n+1)
210+
for i := 1; i <= n; i++ {
211+
f[i] = 1 << 30
212+
for j := max(0, i-maxBoxes); j < i; j++ {
213+
if ws[i]-ws[j] <= maxWeight {
214+
f[i] = min(f[i], f[j]+cs[i-1]-cs[j]+2)
215+
}
216+
}
217+
}
218+
return f[n]
219+
}
220+
221+
func min(a, b int) int {
222+
if a < b {
223+
return a
224+
}
225+
return b
226+
}
227+
228+
func max(a, b int) int {
229+
if a > b {
230+
return a
231+
}
232+
return b
233+
}
234+
```
235+
236+
本题数据规模达到 $10^5$,而以上代码的时间复杂度为 $O(n^2)$,会超出时间限制。我们仔细观察:
237+
238+
$$
239+
f[i] = min(f[i], f[j] + cs[i - 1] - cs[j] + 2)
240+
$$
241+
242+
实际上我们是要在 $[i-maxBoxes,..i-1]$ 这个窗口内找到一个 $j$,使得 $f[j] - cs[j]$ 的值最小,求滑动窗口的最小值,一种常用的做法是使用单调队列,可以在 $O(1)$ 时间内获取到满足条件的最小值。
243+
244+
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是题目中箱子的数量。
245+
94246
<!-- tabs:start -->
95247

96248
### **Python3**
97249

98250
<!-- 这里可写当前语言的特殊实现逻辑 -->
99251

100252
```python
101-
253+
class Solution:
254+
def boxDelivering(
255+
self, boxes: List[List[int]], portsCount: int, maxBoxes: int, maxWeight: int
256+
) -> int:
257+
n = len(boxes)
258+
ws = list(accumulate((box[1] for box in boxes), initial=0))
259+
c = [int(a != b) for a, b in pairwise(box[0] for box in boxes)]
260+
cs = list(accumulate(c, initial=0))
261+
f = [0] * (n + 1)
262+
q = deque([0])
263+
for i in range(1, n + 1):
264+
while q and (i - q[0] > maxBoxes or ws[i] - ws[q[0]] > maxWeight):
265+
q.popleft()
266+
if q:
267+
f[i] = cs[i - 1] + f[q[0]] - cs[q[0]] + 2
268+
if i < n:
269+
while q and f[q[-1]] - cs[q[-1]] >= f[i] - cs[i]:
270+
q.pop()
271+
q.append(i)
272+
return f[n]
102273
```
103274

104275
### **Java**
105276

106277
<!-- 这里可写当前语言的特殊实现逻辑 -->
107278

108279
```java
280+
class Solution {
281+
public int boxDelivering(int[][] boxes, int portsCount, int maxBoxes, int maxWeight) {
282+
int n = boxes.length;
283+
long[] ws = new long[n + 1];
284+
int[] cs = new int[n];
285+
for (int i = 0; i < n; ++i) {
286+
int p = boxes[i][0], w = boxes[i][1];
287+
ws[i + 1] = ws[i] + w;
288+
if (i < n - 1) {
289+
cs[i + 1] = cs[i] + (p != boxes[i + 1][0] ? 1 : 0);
290+
}
291+
}
292+
int[] f = new int[n + 1];
293+
Deque<Integer> q = new ArrayDeque<>();
294+
q.offer(0);
295+
for (int i = 1; i <= n; ++i) {
296+
while (!q.isEmpty() && (i - q.peekFirst() > maxBoxes || ws[i] - ws[q.peekFirst()] > maxWeight)) {
297+
q.pollFirst();
298+
}
299+
if (!q.isEmpty()) {
300+
f[i] = cs[i - 1] + f[q.peekFirst()] - cs[q.peekFirst()] + 2;
301+
}
302+
if (i < n) {
303+
while (!q.isEmpty() && f[q.peekLast()] - cs[q.peekLast()] >= f[i] - cs[i]) {
304+
q.pollLast();
305+
}
306+
q.offer(i);
307+
}
308+
}
309+
return f[n];
310+
}
311+
}
312+
```
313+
314+
### **C++**
315+
316+
```cpp
317+
class Solution {
318+
public:
319+
int boxDelivering(vector<vector<int>>& boxes, int portsCount, int maxBoxes, int maxWeight) {
320+
int n = boxes.size();
321+
long ws[n + 1];
322+
int f[n + 1];
323+
int cs[n];
324+
ws[0] = cs[0] = f[0] = 0;
325+
for (int i = 0; i < n; ++i) {
326+
int p = boxes[i][0], w = boxes[i][1];
327+
ws[i + 1] = ws[i] + w;
328+
if (i < n - 1) cs[i + 1] = cs[i] + (p != boxes[i + 1][0]);
329+
}
330+
deque<int> q{{0}};
331+
for (int i = 1; i <= n; ++i) {
332+
while (!q.empty() && (i - q.front() > maxBoxes || ws[i] - ws[q.front()] > maxWeight)) q.pop_front();
333+
if (!q.empty()) f[i] = cs[i - 1] + f[q.front()] - cs[q.front()] + 2;
334+
if (i < n) {
335+
while (!q.empty() && f[q.back()] - cs[q.back()] >= f[i] - cs[i]) q.pop_back();
336+
q.push_back(i);
337+
}
338+
}
339+
return f[n];
340+
}
341+
};
342+
```
109343
344+
### **Go**
345+
346+
```go
347+
func boxDelivering(boxes [][]int, portsCount int, maxBoxes int, maxWeight int) int {
348+
n := len(boxes)
349+
ws := make([]int, n+1)
350+
cs := make([]int, n)
351+
for i, box := range boxes {
352+
p, w := box[0], box[1]
353+
ws[i+1] = ws[i] + w
354+
if i < n-1 {
355+
t := 0
356+
if p != boxes[i+1][0] {
357+
t++
358+
}
359+
cs[i+1] = cs[i] + t
360+
}
361+
}
362+
f := make([]int, n+1)
363+
q := []int{0}
364+
for i := 1; i <= n; i++ {
365+
for len(q) > 0 && (i-q[0] > maxBoxes || ws[i]-ws[q[0]] > maxWeight) {
366+
q = q[1:]
367+
}
368+
if len(q) > 0 {
369+
f[i] = cs[i-1] + f[q[0]] - cs[q[0]] + 2
370+
}
371+
if i < n {
372+
for len(q) > 0 && f[q[len(q)-1]]-cs[q[len(q)-1]] >= f[i]-cs[i] {
373+
q = q[:len(q)-1]
374+
}
375+
q = append(q, i)
376+
}
377+
}
378+
return f[n]
379+
}
110380
```
111381

112382
### **...**

0 commit comments

Comments
 (0)