|
63 | 63 |
|
64 | 64 | <!-- 这里可写通用的实现逻辑 -->
|
65 | 65 |
|
| 66 | +**方法一:动态规划** |
| 67 | + |
| 68 | +我们定义 $f[i][j]$ 表示前 $i+1$ 个元素中,以 $j$ 结尾的特殊子序列的个数。初始时 $f[i][j]=0$,如果 $nums[0]=0$,则 $f[0][0]=1$。 |
| 69 | + |
| 70 | +对于 $i \gt 0$,我们考虑 $nums[i]$ 的值: |
| 71 | + |
| 72 | +如果 $nums[i] = 0$:如果我们不选择 $nums[i]$,则 $f[i][0] = f[i-1][0]$;如果我们选择 $nums[i]$,那么 $f[i][0]=f[i-1][0]+1$,因为我们可以在任何一个以 $0$ 结尾的特殊子序列后面加上一个 $0$ 得到一个新的特殊子序列,也可以将 $nums[i]$ 单独作为一个特殊子序列。因此 $f[i][0] = 2 \times f[i - 1][0] + 1$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。 |
| 73 | + |
| 74 | +如果 $nums[i] = 1$:如果我们不选择 $nums[i]$,则 $f[i][1] = f[i-1][1]$;如果我们选择 $nums[i]$,那么 $f[i][1]=f[i-1][1]+f[i-1][0]$,因为我们可以在任何一个以 $0$ 或 $1$ 结尾的特殊子序列后面加上一个 $1$ 得到一个新的特殊子序列。因此 $f[i][1] = f[i-1][1] + 2 \times f[i - 1][0]$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。 |
| 75 | + |
| 76 | +如果 $nums[i] = 2$:如果我们不选择 $nums[i]$,则 $f[i][2] = f[i-1][2]$;如果我们选择 $nums[i]$,那么 $f[i][2]=f[i-1][2]+f[i-1][1]$,因为我们可以在任何一个以 $1$ 或 $2$ 结尾的特殊子序列后面加上一个 $2$ 得到一个新的特殊子序列。因此 $f[i][2] = f[i-1][2] + 2 \times f[i - 1][1]$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。 |
| 77 | + |
| 78 | +综上,我们可以得到如下的状态转移方程: |
| 79 | + |
| 80 | +$$ |
| 81 | +\begin{aligned} |
| 82 | +f[i][0] &= 2 \times f[i - 1][0] + 1, \quad nums[i] = 0 \\ |
| 83 | +f[i][1] &= f[i-1][1] + 2 \times f[i - 1][0], \quad nums[i] = 1 \\ |
| 84 | +f[i][2] &= f[i-1][2] + 2 \times f[i - 1][1], \quad nums[i] = 2 \\ |
| 85 | +f[i][j] &= f[i-1][j], \quad nums[i] \neq j |
| 86 | +\end{aligned} |
| 87 | +$$ |
| 88 | + |
| 89 | +最终的答案即为 $f[n-1][2]$。 |
| 90 | + |
| 91 | +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。 |
| 92 | + |
| 93 | +我们注意到,上述的状态转移方程中,$f[i][j]$ 的值仅与 $f[i-1][j]$ 有关,因此我们可以去掉第一维,将空间复杂度优化到 $O(1)$。 |
| 94 | + |
66 | 95 | <!-- tabs:start -->
|
67 | 96 |
|
68 | 97 | ### **Python3**
|
69 | 98 |
|
70 | 99 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
71 | 100 |
|
72 | 101 | ```python
|
| 102 | +class Solution: |
| 103 | + def countSpecialSubsequences(self, nums: List[int]) -> int: |
| 104 | + mod = 10**9 + 7 |
| 105 | + n = len(nums) |
| 106 | + f = [[0] * 3 for _ in range(n)] |
| 107 | + f[0][0] = nums[0] == 0 |
| 108 | + for i in range(1, n): |
| 109 | + if nums[i] == 0: |
| 110 | + f[i][0] = (2 * f[i - 1][0] + 1) % mod |
| 111 | + f[i][1] = f[i - 1][1] |
| 112 | + f[i][2] = f[i - 1][2] |
| 113 | + elif nums[i] == 1: |
| 114 | + f[i][0] = f[i - 1][0] |
| 115 | + f[i][1] = (f[i - 1][0] + 2 * f[i - 1][1]) % mod |
| 116 | + f[i][2] = f[i - 1][2] |
| 117 | + else: |
| 118 | + f[i][0] = f[i - 1][0] |
| 119 | + f[i][1] = f[i - 1][1] |
| 120 | + f[i][2] = (f[i - 1][1] + 2 * f[i - 1][2]) % mod |
| 121 | + return f[n - 1][2] |
| 122 | +``` |
73 | 123 |
|
| 124 | +```python |
| 125 | +class Solution: |
| 126 | + def countSpecialSubsequences(self, nums: List[int]) -> int: |
| 127 | + mod = 10**9 + 7 |
| 128 | + n = len(nums) |
| 129 | + f = [0] * 3 |
| 130 | + f[0] = nums[0] == 0 |
| 131 | + for i in range(1, n): |
| 132 | + if nums[i] == 0: |
| 133 | + f[0] = (2 * f[0] + 1) % mod |
| 134 | + elif nums[i] == 1: |
| 135 | + f[1] = (f[0] + 2 * f[1]) % mod |
| 136 | + else: |
| 137 | + f[2] = (f[1] + 2 * f[2]) % mod |
| 138 | + return f[2] |
74 | 139 | ```
|
75 | 140 |
|
76 | 141 | ### **Java**
|
77 | 142 |
|
78 | 143 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
79 | 144 |
|
80 | 145 | ```java
|
| 146 | +class Solution { |
| 147 | + public int countSpecialSubsequences(int[] nums) { |
| 148 | + final int mod = (int) 1e9 + 7; |
| 149 | + int n = nums.length; |
| 150 | + int[][] f = new int[n][3]; |
| 151 | + f[0][0] = nums[0] == 0 ? 1 : 0; |
| 152 | + for (int i = 1; i < n; ++i) { |
| 153 | + if (nums[i] == 0) { |
| 154 | + f[i][0] = (2 * f[i - 1][0] % mod + 1) % mod; |
| 155 | + f[i][1] = f[i - 1][1]; |
| 156 | + f[i][2] = f[i - 1][2]; |
| 157 | + } else if (nums[i] == 1) { |
| 158 | + f[i][0] = f[i - 1][0]; |
| 159 | + f[i][1] = (f[i - 1][0] + 2 * f[i - 1][1] % mod) % mod; |
| 160 | + f[i][2] = f[i - 1][2]; |
| 161 | + } else { |
| 162 | + f[i][0] = f[i - 1][0]; |
| 163 | + f[i][1] = f[i - 1][1]; |
| 164 | + f[i][2] = (f[i - 1][1] + 2 * f[i - 1][2] % mod) % mod; |
| 165 | + } |
| 166 | + } |
| 167 | + return f[n - 1][2]; |
| 168 | + } |
| 169 | +} |
| 170 | +``` |
| 171 | + |
| 172 | +```java |
| 173 | +class Solution { |
| 174 | + public int countSpecialSubsequences(int[] nums) { |
| 175 | + final int mod = (int) 1e9 + 7; |
| 176 | + int n = nums.length; |
| 177 | + int[] f = new int[3]; |
| 178 | + f[0] = nums[0] == 0 ? 1 : 0; |
| 179 | + for (int i = 1; i < n; ++i) { |
| 180 | + if (nums[i] == 0) { |
| 181 | + f[0] = (2 * f[0] % mod + 1) % mod; |
| 182 | + } else if (nums[i] == 1) { |
| 183 | + f[1] = (f[0] + 2 * f[1] % mod) % mod; |
| 184 | + } else { |
| 185 | + f[2] = (f[1] + 2 * f[2] % mod) % mod; |
| 186 | + } |
| 187 | + } |
| 188 | + return f[2]; |
| 189 | + } |
| 190 | +} |
| 191 | +``` |
| 192 | + |
| 193 | +### **C++** |
| 194 | + |
| 195 | +```cpp |
| 196 | +class Solution { |
| 197 | +public: |
| 198 | + int countSpecialSubsequences(vector<int>& nums) { |
| 199 | + const int mod = 1e9 + 7; |
| 200 | + int n = nums.size(); |
| 201 | + int f[n][3]; |
| 202 | + memset(f, 0, sizeof(f)); |
| 203 | + f[0][0] = nums[0] == 0; |
| 204 | + for (int i = 1; i < n; ++i) { |
| 205 | + if (nums[i] == 0) { |
| 206 | + f[i][0] = (2 * f[i - 1][0] % mod + 1) % mod; |
| 207 | + f[i][1] = f[i - 1][1]; |
| 208 | + f[i][2] = f[i - 1][2]; |
| 209 | + } else if (nums[i] == 1) { |
| 210 | + f[i][0] = f[i - 1][0]; |
| 211 | + f[i][1] = (f[i - 1][0] + 2 * f[i - 1][1] % mod) % mod; |
| 212 | + f[i][2] = f[i - 1][2]; |
| 213 | + } else { |
| 214 | + f[i][0] = f[i - 1][0]; |
| 215 | + f[i][1] = f[i - 1][1]; |
| 216 | + f[i][2] = (f[i - 1][1] + 2 * f[i - 1][2] % mod) % mod; |
| 217 | + } |
| 218 | + } |
| 219 | + return f[n - 1][2]; |
| 220 | + } |
| 221 | +}; |
| 222 | +``` |
| 223 | +
|
| 224 | +```cpp |
| 225 | +class Solution { |
| 226 | +public: |
| 227 | + int countSpecialSubsequences(vector<int>& nums) { |
| 228 | + const int mod = 1e9 + 7; |
| 229 | + int n = nums.size(); |
| 230 | + int f[3]{0}; |
| 231 | + f[0] = nums[0] == 0; |
| 232 | + for (int i = 1; i < n; ++i) { |
| 233 | + if (nums[i] == 0) { |
| 234 | + f[0] = (2 * f[0] % mod + 1) % mod; |
| 235 | + } else if (nums[i] == 1) { |
| 236 | + f[1] = (f[0] + 2 * f[1] % mod) % mod; |
| 237 | + } else { |
| 238 | + f[2] = (f[1] + 2 * f[2] % mod) % mod; |
| 239 | + } |
| 240 | + } |
| 241 | + return f[2]; |
| 242 | + } |
| 243 | +}; |
| 244 | +``` |
| 245 | + |
| 246 | +### **Go** |
| 247 | + |
| 248 | +```go |
| 249 | +func countSpecialSubsequences(nums []int) int { |
| 250 | + const mod = 1e9 + 7 |
| 251 | + n := len(nums) |
| 252 | + f := make([][3]int, n) |
| 253 | + if nums[0] == 0 { |
| 254 | + f[0][0] = 1 |
| 255 | + } |
| 256 | + for i := 1; i < n; i++ { |
| 257 | + if nums[i] == 0 { |
| 258 | + f[i][0] = (2*f[i-1][0] + 1) % mod |
| 259 | + f[i][1] = f[i-1][1] |
| 260 | + f[i][2] = f[i-1][2] |
| 261 | + } else if nums[i] == 1 { |
| 262 | + f[i][0] = f[i-1][0] |
| 263 | + f[i][1] = (f[i-1][0] + 2*f[i-1][1]) % mod |
| 264 | + f[i][2] = f[i-1][2] |
| 265 | + } else { |
| 266 | + f[i][0] = f[i-1][0] |
| 267 | + f[i][1] = f[i-1][1] |
| 268 | + f[i][2] = (f[i-1][1] + 2*f[i-1][2]) % mod |
| 269 | + } |
| 270 | + } |
| 271 | + return f[n-1][2] |
| 272 | +} |
| 273 | +``` |
| 274 | + |
| 275 | +```go |
| 276 | +func countSpecialSubsequences(nums []int) int { |
| 277 | + const mod = 1e9 + 7 |
| 278 | + n := len(nums) |
| 279 | + f := [3]int{} |
| 280 | + if nums[0] == 0 { |
| 281 | + f[0] = 1 |
| 282 | + } |
| 283 | + for i := 1; i < n; i++ { |
| 284 | + if nums[i] == 0 { |
| 285 | + f[0] = (2*f[0] + 1) % mod |
| 286 | + } else if nums[i] == 1 { |
| 287 | + f[1] = (f[0] + 2*f[1]) % mod |
| 288 | + } else { |
| 289 | + f[2] = (f[1] + 2*f[2]) % mod |
| 290 | + } |
| 291 | + } |
| 292 | + return f[2] |
| 293 | +} |
| 294 | +``` |
| 295 | + |
| 296 | +### **TypeScript** |
| 297 | + |
| 298 | +```ts |
| 299 | +function countSpecialSubsequences(nums: number[]): number { |
| 300 | + const mod = 1e9 + 7; |
| 301 | + const n = nums.length; |
| 302 | + const f: number[][] = Array(n) |
| 303 | + .fill(0) |
| 304 | + .map(() => Array(3).fill(0)); |
| 305 | + f[0][0] = nums[0] === 0 ? 1 : 0; |
| 306 | + for (let i = 1; i < n; ++i) { |
| 307 | + if (nums[i] === 0) { |
| 308 | + f[i][0] = (((2 * f[i - 1][0]) % mod) + 1) % mod; |
| 309 | + f[i][1] = f[i - 1][1]; |
| 310 | + f[i][2] = f[i - 1][2]; |
| 311 | + } else if (nums[i] === 1) { |
| 312 | + f[i][0] = f[i - 1][0]; |
| 313 | + f[i][1] = (f[i - 1][0] + ((2 * f[i - 1][1]) % mod)) % mod; |
| 314 | + f[i][2] = f[i - 1][2]; |
| 315 | + } else { |
| 316 | + f[i][0] = f[i - 1][0]; |
| 317 | + f[i][1] = f[i - 1][1]; |
| 318 | + f[i][2] = (f[i - 1][1] + ((2 * f[i - 1][2]) % mod)) % mod; |
| 319 | + } |
| 320 | + } |
| 321 | + return f[n - 1][2]; |
| 322 | +} |
| 323 | +``` |
81 | 324 |
|
| 325 | +```ts |
| 326 | +function countSpecialSubsequences(nums: number[]): number { |
| 327 | + const mod = 1e9 + 7; |
| 328 | + const n = nums.length; |
| 329 | + const f: number[] = [0, 0, 0]; |
| 330 | + f[0] = nums[0] === 0 ? 1 : 0; |
| 331 | + for (let i = 1; i < n; ++i) { |
| 332 | + if (nums[i] === 0) { |
| 333 | + f[0] = (((2 * f[0]) % mod) + 1) % mod; |
| 334 | + f[1] = f[1]; |
| 335 | + f[2] = f[2]; |
| 336 | + } else if (nums[i] === 1) { |
| 337 | + f[0] = f[0]; |
| 338 | + f[1] = (f[0] + ((2 * f[1]) % mod)) % mod; |
| 339 | + f[2] = f[2]; |
| 340 | + } else { |
| 341 | + f[0] = f[0]; |
| 342 | + f[1] = f[1]; |
| 343 | + f[2] = (f[1] + ((2 * f[2]) % mod)) % mod; |
| 344 | + } |
| 345 | + } |
| 346 | + return f[2]; |
| 347 | +} |
82 | 348 | ```
|
83 | 349 |
|
84 | 350 | ### **...**
|
|
0 commit comments