You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: solution/2300-2399/2306.Naming a Company/README_EN.md
+46-10
Original file line number
Diff line number
Diff line change
@@ -56,6 +56,18 @@ The following are some examples of invalid selections:
56
56
57
57
## Solutions
58
58
59
+
**Solution 1: Enumeration Counting**
60
+
61
+
We define $f[i][j]$ to represent the number of strings in $ideas$ that start with the $i$th letter and are not in $ideas$ after being replaced with the $j$th letter. Initially, $f[i][j] = 0$. Additionally, we use a hash table $s$ to record the strings in $ideas$, which allows us to quickly determine whether a string is in $ideas$.
62
+
63
+
Next, we traverse the strings in $ideas$. For the current string $v$, we enumerate the first letter $j$ after replacement. If the string after $v$ is replaced is not in $ideas$, then we update $f[i][j] = f[i][j] + 1$.
64
+
65
+
Finally, we traverse the strings in $ideas$ again. For the current string $v$, we enumerate the first letter $j$ after replacement. If the string after $v$ is replaced is not in $ideas$, then we update the answer $ans = ans + f[j][i]$.
66
+
67
+
The final answer is $ans$.
68
+
69
+
The time complexity is $O(n \times m \times |\Sigma|)$, and the space complexity is $O(|\Sigma|^2)$. Here, $n$ and $m$ are the number of strings in $ideas$ and the maximum length of the strings, respectively, and $|\Sigma|$ is the character set that appears in the string. In this problem, $|\Sigma| \leq 26$.
0 commit comments