|
45 | 45 |
|
46 | 46 | <!-- 这里可写通用的实现逻辑 -->
|
47 | 47 |
|
| 48 | +**方法一:记忆化搜索** |
| 49 | + |
| 50 | +定义函数 `dfs(i, j)` 表示先手面对数组 `nums[i..j]` 时,能够获得的最大分数。 |
| 51 | + |
| 52 | +我们先看后手,后手可能面对的情况有两种,分别是 `nums[i+1..j]` 和 `nums[i..j-1]`,获得的最大分数分别为 `dfs(i+1, j)` 和 `dfs(i, j-1)`。 |
| 53 | + |
| 54 | +先手要最大化自己的分数,就要让后手可获得的分数最小,即 `min(dfs(i+1, j), dfs(i, j-1))`。所以先手能获得的分数为 `sum(nums[i..j]) - min(dfs(i+1, j), dfs(i, j-1))`。 |
| 55 | + |
| 56 | +记忆化搜索即可。 |
| 57 | + |
| 58 | +时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为数组 `nums` 的长度。 |
| 59 | + |
48 | 60 | <!-- tabs:start -->
|
49 | 61 |
|
50 | 62 | ### **Python3**
|
51 | 63 |
|
52 | 64 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
53 | 65 |
|
54 | 66 | ```python
|
55 |
| - |
| 67 | +class Solution: |
| 68 | + def PredictTheWinner(self, nums: List[int]) -> bool: |
| 69 | + @cache |
| 70 | + def dfs(i, j): |
| 71 | + if i > j: |
| 72 | + return 0 |
| 73 | + a = min(dfs(i + 1, j), dfs(i, j - 1)) |
| 74 | + return s[j + 1] - s[i] - a |
| 75 | + |
| 76 | + s = list(accumulate(nums, initial=0)) |
| 77 | + return dfs(0, len(nums) - 1) * 2 >= s[-1] |
56 | 78 | ```
|
57 | 79 |
|
58 | 80 | ### **Java**
|
59 | 81 |
|
60 | 82 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
61 | 83 |
|
62 | 84 | ```java
|
| 85 | +class Solution { |
| 86 | + public boolean PredictTheWinner(int[] nums) { |
| 87 | + int n = nums.length; |
| 88 | + if ((n & 1) == 0) { |
| 89 | + return true; |
| 90 | + } |
| 91 | + int[] f = new int[n]; |
| 92 | + for (int i = n - 1; i >= 0; --i) { |
| 93 | + f[i] = nums[i]; |
| 94 | + for (int j = i + 1; j < n; ++j) { |
| 95 | + f[j] = Math.max(nums[i] - f[j], nums[j] - f[j - 1]); |
| 96 | + } |
| 97 | + } |
| 98 | + return f[n - 1] >= 0; |
| 99 | + } |
| 100 | +} |
| 101 | +``` |
| 102 | + |
| 103 | +```java |
| 104 | +class Solution { |
| 105 | + private int[] s; |
| 106 | + private int[][] f; |
| 107 | + |
| 108 | + public boolean PredictTheWinner(int[] nums) { |
| 109 | + int n = nums.length; |
| 110 | + s = new int[n + 1]; |
| 111 | + for (int i = 0; i < n; ++i) { |
| 112 | + s[i + 1] = s[i] + nums[i]; |
| 113 | + } |
| 114 | + f = new int[n + 1][n + 1]; |
| 115 | + for (var e : f) { |
| 116 | + Arrays.fill(e, -1); |
| 117 | + } |
| 118 | + return dfs(0, n - 1) * 2 >= s[n]; |
| 119 | + } |
| 120 | + |
| 121 | + private int dfs(int i, int j) { |
| 122 | + if (i > j) { |
| 123 | + return 0; |
| 124 | + } |
| 125 | + if (f[i][j] != -1) { |
| 126 | + return f[i][j]; |
| 127 | + } |
| 128 | + int a = Math.min(dfs(i + 1, j), dfs(i, j - 1)); |
| 129 | + int res = s[j + 1] - s[i] - a; |
| 130 | + f[i][j] = res; |
| 131 | + return res; |
| 132 | + } |
| 133 | +} |
| 134 | +``` |
| 135 | + |
| 136 | +### **C++** |
| 137 | + |
| 138 | +```cpp |
| 139 | +class Solution { |
| 140 | +public: |
| 141 | + vector<vector<int>> f; |
| 142 | + vector<int> s; |
| 143 | + |
| 144 | + bool PredictTheWinner(vector<int>& nums) { |
| 145 | + int n = nums.size(); |
| 146 | + s.resize(n + 1); |
| 147 | + for (int i = 0; i < n; ++i) { |
| 148 | + s[i + 1] = s[i] + nums[i]; |
| 149 | + } |
| 150 | + f.assign(n + 1, vector<int>(n + 1, -1)); |
| 151 | + return dfs(0, n - 1) * 2 >= s[n]; |
| 152 | + } |
| 153 | + |
| 154 | + int dfs(int i, int j) { |
| 155 | + if (i > j) return 0; |
| 156 | + if (f[i][j] != -1) return f[i][j]; |
| 157 | + int a = min(dfs(i + 1, j), dfs(i, j - 1)); |
| 158 | + int res = s[j + 1] - s[i] - a; |
| 159 | + f[i][j] = res; |
| 160 | + return res; |
| 161 | + } |
| 162 | +}; |
| 163 | +``` |
63 | 164 |
|
| 165 | +### **Go** |
| 166 | +
|
| 167 | +```go |
| 168 | +func PredictTheWinner(nums []int) bool { |
| 169 | + n := len(nums) |
| 170 | + s := make([]int, n+1) |
| 171 | + f := make([][]int, n+1) |
| 172 | + for i, v := range nums { |
| 173 | + s[i+1] = s[i] + v |
| 174 | + } |
| 175 | + for i := range f { |
| 176 | + f[i] = make([]int, n+1) |
| 177 | + for j := range f[i] { |
| 178 | + f[i][j] = -1 |
| 179 | + } |
| 180 | + } |
| 181 | + var dfs func(i, j int) int |
| 182 | + dfs = func(i, j int) int { |
| 183 | + if i > j { |
| 184 | + return 0 |
| 185 | + } |
| 186 | + if f[i][j] != -1 { |
| 187 | + return f[i][j] |
| 188 | + } |
| 189 | + a := min(dfs(i+1, j), dfs(i, j-1)) |
| 190 | + f[i][j] = s[j+1] - s[i] - a |
| 191 | + return f[i][j] |
| 192 | + } |
| 193 | + return dfs(0, n-1)*2 >= s[n] |
| 194 | +} |
| 195 | +
|
| 196 | +func min(a, b int) int { |
| 197 | + if a < b { |
| 198 | + return a |
| 199 | + } |
| 200 | + return b |
| 201 | +} |
64 | 202 | ```
|
65 | 203 |
|
66 | 204 | ### **...**
|
|
0 commit comments