|
47 | 47 |
|
48 | 48 | <!-- 这里可写通用的实现逻辑 -->
|
49 | 49 |
|
| 50 | +**方法一:递归** |
| 51 | + |
| 52 | +我们注意到,三个开关只能影响当前节点及其左右子节点,因此我们可以将当前节点的状态分为四种: |
| 53 | + |
| 54 | +- 全灭:当前节点及其左右子节点的灯均处于关闭状态; |
| 55 | +- 全亮:当前节点及其左右子节点的灯均处于开启状态; |
| 56 | +- 当前灯亮:当前节点的灯处于开启状态,其余节点的灯均处于关闭状态; |
| 57 | +- 当前灯灭:当前节点的灯处于关闭状态,其余节点的灯均处于开启状态; |
| 58 | + |
| 59 | +我们用 $t_1$, $t_2$, $t_3$, $t_4$ 分别表示四种状态下,需要操作的开关次数。我们可以发现,对于当前节点的状态,我们先递归计算其左右子节点的状态 $l_1$, $l_2$, $l_3$, $l_4$ 和 $r_1$, $r_2$, $r_3$, $r_4$,然后根据当前节点的灯的状态,可以得到四种状态下的最小操作次数: |
| 60 | + |
| 61 | +如果当前节点的灯处于开启状态,那么: |
| 62 | + |
| 63 | +- 全灭 $t_1 = min(l_1 + r_1 + 1, l_2 + r_2 + 1, l_3 + r_3 + 1, l_4 + r_4 + 3)$ |
| 64 | +- 全亮 $t_2 = min(l_1 + r_1 + 2, l_2 + r_2, l_3 + r_3 + 2, l_4 + r_4 + 2)$ |
| 65 | +- 当前灯亮 $t_3 = min(l_1 + r_1, l_2 + r_2 + 2, l_3 + r_3 + 2, l_4 + r_4 + 2)$ |
| 66 | +- 当前灯灭 $t_4 = min(l_1 + r_1 + 1, l_2 + r_2 + 1, l_3 + r_3 + 3, l_4 + r_4 + 1)$ |
| 67 | + |
| 68 | +如果当前节点的灯处于关闭状态,那么: |
| 69 | + |
| 70 | +- 全灭 $t_1 = min(l_1 + r_1, l_2 + r_2 + 2, l_3 + r_3 + 2, l_4 + r_4 + 2)$ |
| 71 | +- 全亮 $t_2 = min(l_1 + r_1 + 1, l_2 + r_2 + 1, l_3 + r_3 + 3, l_4 + r_4 + 1)$ |
| 72 | +- 当前灯亮 $t_3 = min(l_1 + r_1 + 1, l_2 + r_2 + 1, l_3 + r_3 + 1, l_4 + r_4 + 3)$ |
| 73 | +- 当前灯灭 $t_4 = min(l_1 + r_1 + 2, l_2 + r_2, l_3 + r_3 + 2, l_4 + r_4 + 2)$ |
| 74 | + |
| 75 | +最后,我们返回四种状态下的最小操作次数即可。 |
| 76 | + |
| 77 | +最终答案为 $t_1$,因为我们需要将所有节点的灯都关闭。 |
| 78 | + |
| 79 | +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。 |
| 80 | + |
50 | 81 | <!-- tabs:start -->
|
51 | 82 |
|
52 | 83 | ### **Python3**
|
53 | 84 |
|
54 | 85 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
55 | 86 |
|
56 | 87 | ```python
|
| 88 | +# Definition for a binary tree node. |
| 89 | +# class TreeNode: |
| 90 | +# def __init__(self, x): |
| 91 | +# self.val = x |
| 92 | +# self.left = None |
| 93 | +# self.right = None |
| 94 | +class Solution: |
| 95 | + def closeLampInTree(self, root: TreeNode) -> int: |
| 96 | + def dfs(root): |
| 97 | + if root is None: |
| 98 | + return 0, 0, 0, 0 |
| 99 | + l1, l2, l3, l4 = dfs(root.left) |
| 100 | + r1, r2, r3, r4 = dfs(root.right) |
| 101 | + t1 = t2 = t3 = t4 = inf |
| 102 | + if root.val: |
| 103 | + t1 = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3) |
| 104 | + t2 = min(l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2) |
| 105 | + t3 = min(l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2) |
| 106 | + t4 = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1) |
| 107 | + else: |
| 108 | + t1 = min(l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2) |
| 109 | + t2 = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1) |
| 110 | + t3 = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3) |
| 111 | + t4 = min(l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2) |
| 112 | + return t1, t2, t3, t4 |
57 | 113 |
|
| 114 | + return dfs(root)[0] |
58 | 115 | ```
|
59 | 116 |
|
60 | 117 | ### **Java**
|
61 | 118 |
|
62 | 119 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
63 | 120 |
|
64 | 121 | ```java
|
| 122 | +/** |
| 123 | + * Definition for a binary tree node. |
| 124 | + * public class TreeNode { |
| 125 | + * int val; |
| 126 | + * TreeNode left; |
| 127 | + * TreeNode right; |
| 128 | + * TreeNode(int x) { val = x; } |
| 129 | + * } |
| 130 | + */ |
| 131 | +class Solution { |
| 132 | + public int closeLampInTree(TreeNode root) { |
| 133 | + return dfs(root)[0]; |
| 134 | + } |
| 135 | + |
| 136 | + private int[] dfs(TreeNode root) { |
| 137 | + int[] ans = new int[4]; |
| 138 | + if (root == null) { |
| 139 | + return ans; |
| 140 | + } |
| 141 | + int[] left = dfs(root.left); |
| 142 | + int[] right = dfs(root.right); |
| 143 | + int l1 = left[0], l2 = left[1], l3 = left[2], l4 = left[3]; |
| 144 | + int r1 = right[0], r2 = right[1], r3 = right[2], r4 = right[3]; |
| 145 | + if (root.val != 0) { |
| 146 | + ans[0] = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3); |
| 147 | + ans[1] = min(l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2); |
| 148 | + ans[2] = min(l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2); |
| 149 | + ans[3] = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1); |
| 150 | + } else { |
| 151 | + ans[0] = min(l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2); |
| 152 | + ans[1] = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1); |
| 153 | + ans[2] = min(l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3); |
| 154 | + ans[3] = min(l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2); |
| 155 | + } |
| 156 | + return ans; |
| 157 | + } |
| 158 | + |
| 159 | + private int min(int... nums) { |
| 160 | + int ans = 1 << 30; |
| 161 | + for (int num : nums) { |
| 162 | + ans = Math.min(ans, num); |
| 163 | + } |
| 164 | + return ans; |
| 165 | + } |
| 166 | +} |
| 167 | +``` |
| 168 | + |
| 169 | +### **C++** |
| 170 | + |
| 171 | +```cpp |
| 172 | +/** |
| 173 | + * Definition for a binary tree node. |
| 174 | + * struct TreeNode { |
| 175 | + * int val; |
| 176 | + * TreeNode *left; |
| 177 | + * TreeNode *right; |
| 178 | + * TreeNode(int x) : val(x), left(NULL), right(NULL) {} |
| 179 | + * }; |
| 180 | + */ |
| 181 | +class Solution { |
| 182 | +public: |
| 183 | + int closeLampInTree(TreeNode* root) { |
| 184 | + return dfs(root)[0]; |
| 185 | + } |
| 186 | + |
| 187 | + vector<int> dfs(TreeNode* root) { |
| 188 | + vector<int> ans(4); |
| 189 | + if (!root) { |
| 190 | + return ans; |
| 191 | + } |
| 192 | + auto left = dfs(root->left); |
| 193 | + auto right = dfs(root->right); |
| 194 | + int l1 = left[0], l2 = left[1], l3 = left[2], l4 = left[3]; |
| 195 | + int r1 = right[0], r2 = right[1], r3 = right[2], r4 = right[3]; |
| 196 | + if (root->val) { |
| 197 | + ans[0] = min({l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3}); |
| 198 | + ans[1] = min({l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2}); |
| 199 | + ans[2] = min({l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2}); |
| 200 | + ans[3] = min({l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1}); |
| 201 | + } else { |
| 202 | + ans[0] = min({l1 + r1, l2 + r2 + 2, l3 + r3 + 2, l4 + r4 + 2}); |
| 203 | + ans[1] = min({l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 3, l4 + r4 + 1}); |
| 204 | + ans[2] = min({l1 + r1 + 1, l2 + r2 + 1, l3 + r3 + 1, l4 + r4 + 3}); |
| 205 | + ans[3] = min({l1 + r1 + 2, l2 + r2, l3 + r3 + 2, l4 + r4 + 2}); |
| 206 | + } |
| 207 | + return ans; |
| 208 | + } |
| 209 | +}; |
| 210 | +``` |
| 211 | + |
| 212 | +### **Go** |
| 213 | + |
| 214 | +```go |
| 215 | +/** |
| 216 | + * Definition for a binary tree node. |
| 217 | + * type TreeNode struct { |
| 218 | + * Val int |
| 219 | + * Left *TreeNode |
| 220 | + * Right *TreeNode |
| 221 | + * } |
| 222 | + */ |
| 223 | +func closeLampInTree(root *TreeNode) (ans int) { |
| 224 | + const inf = 1 << 30 |
| 225 | + var dfs func(*TreeNode) (int, int, int, int) |
| 226 | + dfs = func(root *TreeNode) (int, int, int, int) { |
| 227 | + if root == nil { |
| 228 | + return 0, 0, 0, 0 |
| 229 | + } |
| 230 | + l1, l2, l3, l4 := dfs(root.Left) |
| 231 | + r1, r2, r3, r4 := dfs(root.Right) |
| 232 | + t1, t2, t3, t4 := inf, inf, inf, inf |
| 233 | + if root.Val == 1 { |
| 234 | + t1 = min(l1+r1+1, l2+r2+1, l3+r3+1, l4+r4+3) |
| 235 | + t2 = min(l1+r1+2, l2+r2, l3+r3+2, l4+r4+2) |
| 236 | + t3 = min(l1+r1, l2+r2+2, l3+r3+2, l4+r4+2) |
| 237 | + t4 = min(l1+r1+1, l2+r2+1, l3+r3+3, l4+r4+1) |
| 238 | + } else { |
| 239 | + t1 = min(l1+r1, l2+r2+2, l3+r3+2, l4+r4+2) |
| 240 | + t2 = min(l1+r1+1, l2+r2+1, l3+r3+3, l4+r4+1) |
| 241 | + t3 = min(l1+r1+1, l2+r2+1, l3+r3+1, l4+r4+3) |
| 242 | + t4 = min(l1+r1+2, l2+r2, l3+r3+2, l4+r4+2) |
| 243 | + } |
| 244 | + return t1, t2, t3, t4 |
| 245 | + } |
| 246 | + ans, _, _, _ = dfs(root) |
| 247 | + return |
| 248 | +} |
65 | 249 |
|
| 250 | +func min(a, b, c, d int) int { |
| 251 | + if b < a { |
| 252 | + a = b |
| 253 | + } |
| 254 | + if c < a { |
| 255 | + a = c |
| 256 | + } |
| 257 | + if d < a { |
| 258 | + a = d |
| 259 | + } |
| 260 | + return a |
| 261 | +} |
66 | 262 | ```
|
67 | 263 |
|
68 | 264 | ### **...**
|
|
0 commit comments