Skip to content

Files

Latest commit

c61860e · Apr 14, 2023

History

History
249 lines (208 loc) · 6.24 KB

File metadata and controls

249 lines (208 loc) · 6.24 KB

中文文档

Description

Given a positive integer num, split it into two non-negative integers num1 and num2 such that:

  • The concatenation of num1 and num2 is a permutation of num.
    • In other words, the sum of the number of occurrences of each digit in num1 and num2 is equal to the number of occurrences of that digit in num.
  • num1 and num2 can contain leading zeros.

Return the minimum possible sum of num1 and num2.

Notes:

  • It is guaranteed that num does not contain any leading zeros.
  • The order of occurrence of the digits in num1 and num2 may differ from the order of occurrence of num.

 

Example 1:

Input: num = 4325
Output: 59
Explanation: We can split 4325 so that num1 is 24 and num2 is 35, giving a sum of 59. We can prove that 59 is indeed the minimal possible sum.

Example 2:

Input: num = 687
Output: 75
Explanation: We can split 687 so that num1 is 68 and num2 is 7, which would give an optimal sum of 75.

 

Constraints:

  • 10 <= num <= 109

Solutions

Approach 1: Count + Greedy

We first use a hash table or array cnt to count the number of times each digit appears in num, and use the variable n to record the number of digits in num.

Then, enumerate the number of digits i of nums, and assign the numbers in cnt in ascending order alternately to num1 and num2, and record it in an array of length 2 $ans. Finally, return the sum of the two numbers in ans.

The time complexity is O ( n ) and the space complexity is O ( C ) . Where n is the number of digits in num; and C is the number of different numbers in num, which is C 10 in this problem.

Approach 2: Sorting + Greedy

We can convert num to a string or character array and sort it. Then assign the numbers in the sorted array in ascending order alternately to num1 and num2, and finally return the sum of num1 and num2.

The time complexity is O ( n × log n ) and the space complexity is O ( n ) . Where n is the number of digits in num.

Python3

class Solution:
    def splitNum(self, num: int) -> int:
        cnt = Counter()
        n = 0
        while num:
            cnt[num % 10] += 1
            num //= 10
            n += 1
        ans = [0] * 2
        j = 0
        for i in range(n):
            while cnt[j] == 0:
                j += 1
            cnt[j] -= 1
            ans[i & 1] = ans[i & 1] * 10 + j
        return sum(ans)
class Solution:
    def splitNum(self, num: int) -> int:
        s = sorted(str(num))
        return int(''.join(s[::2])) + int(''.join(s[1::2]))

Java

class Solution {
    public int splitNum(int num) {
        int[] cnt = new int[10];
        int n = 0;
        for (; num > 0; num /= 10) {
            ++cnt[num % 10];
            ++n;
        }
        int[] ans = new int[2];
        for (int i = 0, j = 0; i < n; ++i) {
            while (cnt[j] == 0) {
                ++j;
            }
            --cnt[j];
            ans[i & 1] = ans[i & 1] * 10 + j;
        }
        return ans[0] + ans[1];
    }
}
class Solution {
    public int splitNum(int num) {
        char[] s = (num + "").toCharArray();
        Arrays.sort(s);
        int[] ans = new int[2];
        for (int i = 0; i < s.length; ++i) {
            ans[i & 1] = ans[i & 1] * 10 + s[i] - '0';
        }
        return ans[0] + ans[1];
    }
}

C++

class Solution {
public:
    int splitNum(int num) {
        int cnt[10]{};
        int n = 0;
        for (; num; num /= 10) {
            ++cnt[num % 10];
            ++n;
        }
        int ans[2]{};
        for (int i = 0, j = 0; i < n; ++i) {
            while (cnt[j] == 0) {
                ++j;
            }
            --cnt[j];
            ans[i & 1] = ans[i & 1] * 10 + j;
        }
        return ans[0] + ans[1];
    }
};
class Solution {
public:
    int splitNum(int num) {
        string s = to_string(num);
        sort(s.begin(), s.end());
        int ans[2]{};
        for (int i = 0; i < s.size(); ++i) {
            ans[i & 1] = ans[i & 1] * 10 + s[i] - '0';
        }
        return ans[0] + ans[1];
    }
};

Go

func splitNum(num int) int {
	cnt := [10]int{}
	n := 0
	for ; num > 0; num /= 10 {
		cnt[num%10]++
		n++
	}
	ans := [2]int{}
	for i, j := 0, 0; i < n; i++ {
		for cnt[j] == 0 {
			j++
		}
		cnt[j]--
		ans[i&1] = ans[i&1]*10 + j
	}
	return ans[0] + ans[1]
}
func splitNum(num int) int {
	s := []byte(strconv.Itoa(num))
	sort.Slice(s, func(i, j int) bool { return s[i] < s[j] })
	ans := [2]int{}
	for i, c := range s {
		ans[i&1] = ans[i&1]*10 + int(c-'0')
	}
	return ans[0] + ans[1]
}

TypeScript

function splitNum(num: number): number {
    const cnt = new Array(10).fill(0);
    let n = 0;
    for (; num > 0; num = Math.floor(num / 10)) {
        ++cnt[num % 10];
        ++n;
    }
    const ans = new Array(2).fill(0);
    for (let i = 0, j = 0; i < n; ++i) {
        while (cnt[j] === 0) {
            ++j;
        }
        --cnt[j];
        ans[i & 1] = ans[i & 1] * 10 + j;
    }
    return ans[0] + ans[1];
}
function splitNum(num: number): number {
    const s: string[] = String(num).split('');
    s.sort();
    const ans: number[] = new Array(2).fill(0);
    for (let i = 0; i < s.length; ++i) {
        ans[i & 1] = ans[i & 1] * 10 + Number(s[i]);
    }
    return ans[0] + ans[1];
}

...