Skip to content

Files

217 lines (180 loc) · 9.64 KB

File metadata and controls

217 lines (180 loc) · 9.64 KB

English Version

题目描述

给你一个  n x 2 的二维数组 points ,它表示二维平面上的一些点坐标,其中 points[i] = [xi, yi] 。

我们定义 x 轴的正方向为  (x 轴递增的方向),x 轴的负方向为  (x 轴递减的方向)。类似的,我们定义 y 轴的正方向为  (y 轴递增的方向),y 轴的负方向为  (y 轴递减的方向)。

你需要安排这 n 个人的站位,这 n 个人中包括 liupengsay 和小羊肖恩 。你需要确保每个点处 恰好 有 一个 人。同时,liupengsay 想跟小羊肖恩单独玩耍,所以 liupengsay 会以 liupengsay 的坐标为 左上角 ,小羊肖恩的坐标为 右下角 建立一个矩形的围栏(注意,围栏可能  包含任何区域,也就是说围栏可能是一条线段)。如果围栏的 内部 或者 边缘 上有任何其他人,liupengsay 都会难过。

请你在确保 liupengsay 不会 难过的前提下,返回 liupengsay 和小羊肖恩可以选择的 点对 数目。

注意,liupengsay 建立的围栏必须确保 liupengsay 的位置是矩形的左上角,小羊肖恩的位置是矩形的右下角。比方说,以 (1, 1) ,(1, 3) ,(3, 1) 和 (3, 3) 为矩形的四个角,给定下图的两个输入,liupengsay 都不能建立围栏,原因如下:

  • 图一中,liupengsay 在 (3, 3) 且小羊肖恩在 (1, 1) ,liupengsay 的位置不是左上角且小羊肖恩的位置不是右下角。
  • 图二中,liupengsay 在 (1, 3) 且小羊肖恩在 (1, 1) ,小羊肖恩的位置不是在围栏的右下角。

 

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:0
解释:没有办法可以让 liupengsay 的围栏以 liupengsay 的位置为左上角且小羊肖恩的位置为右下角。所以我们返回 0 。

示例 2:

输入:points = [[6,2],[4,4],[2,6]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (4, 4) ,小羊肖恩站在 (6, 2) 。
- liupengsay 站在 (2, 6) ,小羊肖恩站在 (4, 4) 。
不能安排 liupengsay 站在 (2, 6) 且小羊肖恩站在 (6, 2) ,因为站在 (4, 4) 的人处于围栏内。

示例 3:

输入:points = [[3,1],[1,3],[1,1]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (1, 1) ,小羊肖恩站在 (3, 1) 。
- liupengsay 站在 (1, 3) ,小羊肖恩站在 (1, 1) 。
不能安排 liupengsay 站在 (1, 3) 且小羊肖恩站在 (3, 1) ,因为站在 (1, 1) 的人处于围栏内。
注意围栏是可以不包含任何面积的,上图中第一和第二个围栏都是合法的。

 

提示:

  • 2 <= n <= 1000
  • points[i].length == 2
  • -109 <= points[i][0], points[i][1] <= 109
  • points[i] 点对两两不同。

解法

方法一:排序 + 枚举

我们不妨考虑枚举矩形左上角的点 ( x 1 , y 1 ) ,那么根据题目,右下角的点 ( x 2 , y 2 ) 随着 x 的增大,纵坐标 y 也会要严格增大,才符合题意。

因此,我们对所有点按照 x 坐标升序排序,如果 x 坐标相同,按照 y 坐标降序排序。

然后我们枚举左上角的点 ( x 1 , y 1 ) ,并且维护一个最大的 y 2 ,记为 m a x Y ,表示所有右下角的点的纵坐标的最大值。然后我们枚举右下角的点 ( x 2 , y 2 ) ,如果 y 2 大于 m a x Y 并且小于等于 y 1 ,那么我们就找到了一个合法的方案,将答案加一,然后更新 m a x Y y 2

枚举完所有的点对后,我们就得到了答案。

时间复杂度 O ( n 2 ) ,空间复杂度 O ( log n ) 。其中 n 是点的数量。

class Solution:
    def numberOfPairs(self, points: List[List[int]]) -> int:
        points.sort(key=lambda x: (x[0], -x[1]))
        ans = 0
        for i, (_, y1) in enumerate(points):
            max_y = -inf
            for _, y2 in points[i + 1 :]:
                if max_y < y2 <= y1:
                    max_y = y2
                    ans += 1
        return ans
class Solution {
    public int numberOfPairs(int[][] points) {
        Arrays.sort(points, (a, b) -> a[0] == b[0] ? b[1] - a[1] : a[0] - b[0]);
        int ans = 0;
        int n = points.length;
        final int inf = 1 << 30;
        for (int i = 0; i < n; ++i) {
            int y1 = points[i][1];
            int maxY = -inf;
            for (int j = i + 1; j < n; ++j) {
                int y2 = points[j][1];
                if (maxY < y2 && y2 <= y1) {
                    maxY = y2;
                    ++ans;
                }
            }
        }
        return ans;
    }
}
class Solution {
public:
    int numberOfPairs(vector<vector<int>>& points) {
        sort(points.begin(), points.end(), [](const vector<int>& a, const vector<int>& b) {
            return a[0] < b[0] || (a[0] == b[0] && b[1] < a[1]);
        });
        int n = points.size();
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int y1 = points[i][1];
            int maxY = INT_MIN;
            for (int j = i + 1; j < n; ++j) {
                int y2 = points[j][1];
                if (maxY < y2 && y2 <= y1) {
                    maxY = y2;
                    ++ans;
                }
            }
        }
        return ans;
    }
};
func numberOfPairs(points [][]int) (ans int) {
	sort.Slice(points, func(i, j int) bool {
		return points[i][0] < points[j][0] || points[i][0] == points[j][0] && points[j][1] < points[i][1]
	})
	for i, p1 := range points {
		y1 := p1[1]
		maxY := math.MinInt32
		for _, p2 := range points[i+1:] {
			y2 := p2[1]
			if maxY < y2 && y2 <= y1 {
				maxY = y2
				ans++
			}
		}
	}
	return
}
function numberOfPairs(points: number[][]): number {
    points.sort((a, b) => (a[0] === b[0] ? b[1] - a[1] : a[0] - b[0]));
    const n = points.length;
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        const [_, y1] = points[i];
        let maxY = -Infinity;
        for (let j = i + 1; j < n; ++j) {
            const [_, y2] = points[j];
            if (maxY < y2 && y2 <= y1) {
                maxY = y2;
                ++ans;
            }
        }
    }
    return ans;
}
public class Solution {
    public int NumberOfPairs(int[][] points) {
        Array.Sort(points, (a, b) => a[0] == b[0] ? b[1] - a[1] : a[0] - b[0]);
        int ans = 0;
        int n = points.Length;
        int inf = 1 << 30;
        for (int i = 0; i < n; ++i) {
            int y1 = points[i][1];
            int maxY = -inf;
            for (int j = i + 1; j < n; ++j) {
                int y2 = points[j][1];
                if (maxY < y2 && y2 <= y1) {
                    maxY = y2;
                    ++ans;
                }
            }
        }
        return ans;
    }
}