Skip to content

Files

Latest commit

c29b144 · May 17, 2024

History

History
488 lines (435 loc) · 12.6 KB

File metadata and controls

488 lines (435 loc) · 12.6 KB
comments difficulty edit_url rating source tags
true
Medium
1714
Weekly Contest 304 Q3
Depth-First Search
Graph

中文文档

Description

You are given a directed graph of n nodes numbered from 0 to n - 1, where each node has at most one outgoing edge.

The graph is represented with a given 0-indexed array edges of size n, indicating that there is a directed edge from node i to node edges[i]. If there is no outgoing edge from i, then edges[i] == -1.

You are also given two integers node1 and node2.

Return the index of the node that can be reached from both node1 and node2, such that the maximum between the distance from node1 to that node, and from node2 to that node is minimized. If there are multiple answers, return the node with the smallest index, and if no possible answer exists, return -1.

Note that edges may contain cycles.

 

Example 1:

Input: edges = [2,2,3,-1], node1 = 0, node2 = 1
Output: 2
Explanation: The distance from node 0 to node 2 is 1, and the distance from node 1 to node 2 is 1.
The maximum of those two distances is 1. It can be proven that we cannot get a node with a smaller maximum distance than 1, so we return node 2.

Example 2:

Input: edges = [1,2,-1], node1 = 0, node2 = 2
Output: 2
Explanation: The distance from node 0 to node 2 is 2, and the distance from node 2 to itself is 0.
The maximum of those two distances is 2. It can be proven that we cannot get a node with a smaller maximum distance than 2, so we return node 2.

 

Constraints:

  • n == edges.length
  • 2 <= n <= 105
  • -1 <= edges[i] < n
  • edges[i] != i
  • 0 <= node1, node2 < n

Solutions

Solution 1

Python3

class Solution:
    def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
        def dijkstra(i):
            dist = [inf] * n
            dist[i] = 0
            q = [(0, i)]
            while q:
                i = heappop(q)[1]
                for j in g[i]:
                    if dist[j] > dist[i] + 1:
                        dist[j] = dist[i] + 1
                        heappush(q, (dist[j], j))
            return dist

        g = defaultdict(list)
        for i, j in enumerate(edges):
            if j != -1:
                g[i].append(j)
        n = len(edges)
        d1 = dijkstra(node1)
        d2 = dijkstra(node2)
        ans, d = -1, inf
        for i, (a, b) in enumerate(zip(d1, d2)):
            if (t := max(a, b)) < d:
                d = t
                ans = i
        return ans

Java

class Solution {
    private int n;
    private List<Integer>[] g;

    public int closestMeetingNode(int[] edges, int node1, int node2) {
        n = edges.length;
        g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].add(edges[i]);
            }
        }
        int[] d1 = dijkstra(node1);
        int[] d2 = dijkstra(node2);
        int d = 1 << 30;
        int ans = -1;
        for (int i = 0; i < n; ++i) {
            int t = Math.max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }

    private int[] dijkstra(int i) {
        int[] dist = new int[n];
        Arrays.fill(dist, 1 << 30);
        dist[i] = 0;
        PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        q.offer(new int[] {0, i});
        while (!q.isEmpty()) {
            var p = q.poll();
            i = p[1];
            for (int j : g[i]) {
                if (dist[j] > dist[i] + 1) {
                    dist[j] = dist[i] + 1;
                    q.offer(new int[] {dist[j], j});
                }
            }
        }
        return dist;
    }
}

C++

class Solution {
public:
    int closestMeetingNode(vector<int>& edges, int node1, int node2) {
        int n = edges.size();
        vector<vector<int>> g(n);
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].push_back(edges[i]);
            }
        }
        const int inf = 1 << 30;
        using pii = pair<int, int>;
        auto dijkstra = [&](int i) {
            vector<int> dist(n, inf);
            dist[i] = 0;
            priority_queue<pii, vector<pii>, greater<pii>> q;
            q.emplace(0, i);
            while (!q.empty()) {
                auto p = q.top();
                q.pop();
                i = p.second;
                for (int j : g[i]) {
                    if (dist[j] > dist[i] + 1) {
                        dist[j] = dist[i] + 1;
                        q.emplace(dist[j], j);
                    }
                }
            }
            return dist;
        };
        vector<int> d1 = dijkstra(node1);
        vector<int> d2 = dijkstra(node2);
        int ans = -1, d = inf;
        for (int i = 0; i < n; ++i) {
            int t = max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }
};

Go

func closestMeetingNode(edges []int, node1 int, node2 int) int {
	n := len(edges)
	g := make([][]int, n)
	for i, j := range edges {
		if j != -1 {
			g[i] = append(g[i], j)
		}
	}
	const inf int = 1 << 30
	dijkstra := func(i int) []int {
		dist := make([]int, n)
		for j := range dist {
			dist[j] = inf
		}
		dist[i] = 0
		q := hp{}
		heap.Push(&q, pair{0, i})
		for len(q) > 0 {
			i := heap.Pop(&q).(pair).i
			for _, j := range g[i] {
				if dist[j] > dist[i]+1 {
					dist[j] = dist[i] + 1
					heap.Push(&q, pair{dist[j], j})
				}
			}
		}
		return dist
	}
	d1 := dijkstra(node1)
	d2 := dijkstra(node2)
	ans, d := -1, inf
	for i, a := range d1 {
		b := d2[i]
		t := max(a, b)
		if t < d {
			d = t
			ans = i
		}
	}
	return ans
}

type pair struct{ d, i int }
type hp []pair

func (h hp) Len() int           { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].d < h[j].d }
func (h hp) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)        { *h = append(*h, v.(pair)) }
func (h *hp) Pop() any          { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }

TypeScript

function closestMeetingNode(edges: number[], node1: number, node2: number): number {
    const n = edges.length;
    const g = Array.from({ length: n }, () => []);
    for (let i = 0; i < n; ++i) {
        if (edges[i] != -1) {
            g[i].push(edges[i]);
        }
    }
    const inf = 1 << 30;
    const f = (i: number) => {
        const dist = new Array(n).fill(inf);
        dist[i] = 0;
        const q: number[] = [i];
        while (q.length) {
            i = q.shift();
            for (const j of g[i]) {
                if (dist[j] == inf) {
                    dist[j] = dist[i] + 1;
                    q.push(j);
                }
            }
        }
        return dist;
    };
    const d1 = f(node1);
    const d2 = f(node2);
    let ans = -1;
    let d = inf;
    for (let i = 0; i < n; ++i) {
        const t = Math.max(d1[i], d2[i]);
        if (t < d) {
            d = t;
            ans = i;
        }
    }
    return ans;
}

Solution 2

Python3

class Solution:
    def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
        def f(i):
            dist = [inf] * n
            dist[i] = 0
            q = deque([i])
            while q:
                i = q.popleft()
                for j in g[i]:
                    if dist[j] == inf:
                        dist[j] = dist[i] + 1
                        q.append(j)
            return dist

        g = defaultdict(list)
        for i, j in enumerate(edges):
            if j != -1:
                g[i].append(j)
        n = len(edges)
        d1 = f(node1)
        d2 = f(node2)
        ans, d = -1, inf
        for i, (a, b) in enumerate(zip(d1, d2)):
            if (t := max(a, b)) < d:
                d = t
                ans = i
        return ans

Java

class Solution {
    private int n;
    private List<Integer>[] g;

    public int closestMeetingNode(int[] edges, int node1, int node2) {
        n = edges.length;
        g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].add(edges[i]);
            }
        }
        int[] d1 = f(node1);
        int[] d2 = f(node2);
        int d = 1 << 30;
        int ans = -1;
        for (int i = 0; i < n; ++i) {
            int t = Math.max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }

    private int[] f(int i) {
        int[] dist = new int[n];
        Arrays.fill(dist, 1 << 30);
        dist[i] = 0;
        Deque<Integer> q = new ArrayDeque<>();
        q.offer(i);
        while (!q.isEmpty()) {
            i = q.poll();
            for (int j : g[i]) {
                if (dist[j] == 1 << 30) {
                    dist[j] = dist[i] + 1;
                    q.offer(j);
                }
            }
        }
        return dist;
    }
}

C++

class Solution {
public:
    int closestMeetingNode(vector<int>& edges, int node1, int node2) {
        int n = edges.size();
        vector<vector<int>> g(n);
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].push_back(edges[i]);
            }
        }
        const int inf = 1 << 30;
        using pii = pair<int, int>;
        auto f = [&](int i) {
            vector<int> dist(n, inf);
            dist[i] = 0;
            queue<int> q{{i}};
            while (!q.empty()) {
                i = q.front();
                q.pop();
                for (int j : g[i]) {
                    if (dist[j] == inf) {
                        dist[j] = dist[i] + 1;
                        q.push(j);
                    }
                }
            }
            return dist;
        };
        vector<int> d1 = f(node1);
        vector<int> d2 = f(node2);
        int ans = -1, d = inf;
        for (int i = 0; i < n; ++i) {
            int t = max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }
};

Go

func closestMeetingNode(edges []int, node1 int, node2 int) int {
	n := len(edges)
	g := make([][]int, n)
	for i, j := range edges {
		if j != -1 {
			g[i] = append(g[i], j)
		}
	}
	const inf int = 1 << 30
	f := func(i int) []int {
		dist := make([]int, n)
		for j := range dist {
			dist[j] = inf
		}
		dist[i] = 0
		q := []int{i}
		for len(q) > 0 {
			i = q[0]
			q = q[1:]
			for _, j := range g[i] {
				if dist[j] == inf {
					dist[j] = dist[i] + 1
					q = append(q, j)
				}
			}
		}
		return dist
	}
	d1 := f(node1)
	d2 := f(node2)
	ans, d := -1, inf
	for i, a := range d1 {
		b := d2[i]
		t := max(a, b)
		if t < d {
			d = t
			ans = i
		}
	}
	return ans
}