|
| 1 | +# coding: utf-8 |
| 2 | +""" |
| 3 | +通过实现Grad-CAM学习module中的forward_hook和backward_hook函数 |
| 4 | +""" |
| 5 | +import cv2 |
| 6 | +import os |
| 7 | +import numpy as np |
| 8 | +from PIL import Image |
| 9 | +import torch |
| 10 | +import torch.nn as nn |
| 11 | +import torch.nn.functional as F |
| 12 | +import torchvision.transforms as transforms |
| 13 | + |
| 14 | + |
| 15 | +class Net(nn.Module): |
| 16 | + def __init__(self): |
| 17 | + super(Net, self).__init__() |
| 18 | + self.conv1 = nn.Conv2d(3, 6, 5) |
| 19 | + self.pool1 = nn.MaxPool2d(2, 2) |
| 20 | + self.conv2 = nn.Conv2d(6, 16, 5) |
| 21 | + self.pool2 = nn.MaxPool2d(2, 2) |
| 22 | + self.fc1 = nn.Linear(16 * 5 * 5, 120) |
| 23 | + self.fc2 = nn.Linear(120, 84) |
| 24 | + self.fc3 = nn.Linear(84, 10) |
| 25 | + |
| 26 | + def forward(self, x): |
| 27 | + x = self.pool1(F.relu(self.conv1(x))) |
| 28 | + x = self.pool1(F.relu(self.conv2(x))) |
| 29 | + x = x.view(-1, 16 * 5 * 5) |
| 30 | + x = F.relu(self.fc1(x)) |
| 31 | + x = F.relu(self.fc2(x)) |
| 32 | + x = self.fc3(x) |
| 33 | + return x |
| 34 | + |
| 35 | + |
| 36 | +def img_transform(img_in, transform): |
| 37 | + """ |
| 38 | + 将img进行预处理,并转换成模型输入所需的形式—— B*C*H*W |
| 39 | + :param img_roi: np.array |
| 40 | + :return: |
| 41 | + """ |
| 42 | + img = img_in.copy() |
| 43 | + img = Image.fromarray(np.uint8(img)) |
| 44 | + img = transform(img) |
| 45 | + img = img.unsqueeze(0) # C*H*W --> B*C*H*W |
| 46 | + return img |
| 47 | + |
| 48 | + |
| 49 | +def img_preprocess(img_in): |
| 50 | + """ |
| 51 | + 读取图片,转为模型可读的形式 |
| 52 | + :param img_in: ndarray, [H, W, C] |
| 53 | + :return: PIL.image |
| 54 | + """ |
| 55 | + img = img_in.copy() |
| 56 | + img = cv2.resize(img,(32, 32)) |
| 57 | + img = img[:, :, ::-1] # BGR --> RGB |
| 58 | + transform = transforms.Compose([ |
| 59 | + transforms.ToTensor(), |
| 60 | + transforms.Normalize([0.4948052, 0.48568845, 0.44682974], [0.24580306, 0.24236229, 0.2603115]) |
| 61 | + ]) |
| 62 | + img_input = img_transform(img, transform) |
| 63 | + return img_input |
| 64 | + |
| 65 | + |
| 66 | +def backward_hook(module, grad_in, grad_out): |
| 67 | + grad_block.append(grad_out[0].detach()) |
| 68 | + |
| 69 | + |
| 70 | +def farward_hook(module, input, output): |
| 71 | + fmap_block.append(output) |
| 72 | + |
| 73 | + |
| 74 | +def show_cam_on_image(img, mask, out_dir): |
| 75 | + heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET) |
| 76 | + heatmap = np.float32(heatmap) / 255 |
| 77 | + cam = heatmap + np.float32(img) |
| 78 | + cam = cam / np.max(cam) |
| 79 | + |
| 80 | + path_cam_img = os.path.join(out_dir, "cam.jpg") |
| 81 | + path_raw_img = os.path.join(out_dir, "raw.jpg") |
| 82 | + if not os.path.exists(out_dir): |
| 83 | + os.makedirs(out_dir) |
| 84 | + cv2.imwrite(path_cam_img, np.uint8(255 * cam)) |
| 85 | + cv2.imwrite(path_raw_img, np.uint8(255 * img)) |
| 86 | + |
| 87 | + |
| 88 | +def comp_class_vec(ouput_vec, index=None): |
| 89 | + """ |
| 90 | + 计算类向量 |
| 91 | + :param ouput_vec: tensor |
| 92 | + :param index: int,指定类别 |
| 93 | + :return: tensor |
| 94 | + """ |
| 95 | + if not index: |
| 96 | + index = np.argmax(ouput_vec.cpu().data.numpy()) |
| 97 | + index = index[np.newaxis, np.newaxis] |
| 98 | + index = torch.from_numpy(index) |
| 99 | + one_hot = torch.zeros(1, 10).scatter_(1, index, 1) |
| 100 | + one_hot.requires_grad = True |
| 101 | + class_vec = torch.sum(one_hot * output) # one_hot = 11.8605 |
| 102 | + |
| 103 | + return class_vec |
| 104 | + |
| 105 | + |
| 106 | +def gen_cam(feature_map, grads): |
| 107 | + """ |
| 108 | + 依据梯度和特征图,生成cam |
| 109 | + :param feature_map: np.array, in [C, H, W] |
| 110 | + :param grads: np.array, in [C, H, W] |
| 111 | + :return: np.array, [H, W] |
| 112 | + """ |
| 113 | + cam = np.zeros(feature_map.shape[1:], dtype=np.float32) # cam shape (H, W) |
| 114 | + |
| 115 | + weights = np.mean(grads, axis=(1, 2)) # |
| 116 | + |
| 117 | + for i, w in enumerate(weights): |
| 118 | + cam += w * feature_map[i, :, :] |
| 119 | + |
| 120 | + cam = np.maximum(cam, 0) |
| 121 | + cam = cv2.resize(cam, (32, 32)) |
| 122 | + cam -= np.min(cam) |
| 123 | + cam /= np.max(cam) |
| 124 | + |
| 125 | + return cam |
| 126 | + |
| 127 | + |
| 128 | +if __name__ == '__main__': |
| 129 | + |
| 130 | + BASE_DIR = os.path.dirname(os.path.abspath(__file__)) |
| 131 | + path_img = os.path.join(BASE_DIR, "../../Data/cam_img/", "test_img_1.png") |
| 132 | + path_net = os.path.join(BASE_DIR, "../../Data/", "net_params_72p.pkl") |
| 133 | + output_dir = os.path.join(BASE_DIR, "../../Result/backward_hook_cam/") |
| 134 | + |
| 135 | + classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') |
| 136 | + fmap_block = list() |
| 137 | + grad_block = list() |
| 138 | + |
| 139 | + # 图片读取;网络加载 |
| 140 | + img = cv2.imread(path_img, 1) # H*W*C |
| 141 | + img_input = img_preprocess(img) |
| 142 | + net = Net() |
| 143 | + net.load_state_dict(torch.load(path_net)) |
| 144 | + |
| 145 | + # 注册hook |
| 146 | + net.conv2.register_forward_hook(farward_hook) |
| 147 | + net.conv2.register_backward_hook(backward_hook) |
| 148 | + |
| 149 | + # forward |
| 150 | + output = net(img_input) |
| 151 | + idx = np.argmax(output.cpu().data.numpy()) |
| 152 | + print("predict: {}".format(classes[idx])) |
| 153 | + |
| 154 | + # backward |
| 155 | + net.zero_grad() |
| 156 | + class_loss = comp_class_vec(output) |
| 157 | + class_loss.backward() |
| 158 | + |
| 159 | + # 生成cam |
| 160 | + grads_val = grad_block[0].cpu().data.numpy().squeeze() |
| 161 | + fmap = fmap_block[0].cpu().data.numpy().squeeze() |
| 162 | + cam = gen_cam(fmap, grads_val) |
| 163 | + |
| 164 | + # 保存cam图片 |
| 165 | + img_show = np.float32(cv2.resize(img, (32, 32))) / 255 |
| 166 | + show_cam_on_image(img_show, cam, output_dir) |
| 167 | + |
| 168 | + |
| 169 | + |
| 170 | + |
| 171 | + |
| 172 | + |
| 173 | + |
| 174 | + |
| 175 | + |
| 176 | + |
| 177 | + |
| 178 | + |
| 179 | + |
| 180 | + |
| 181 | + |
| 182 | + |
0 commit comments