-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusing-callbacks.py
46 lines (41 loc) · 1.28 KB
/
using-callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import keras
from keras import Model
callbacks_list = [
# 这个callback会在模型停止优化时打断训练
keras.callbacks.EarlyStopping(
# 监测验证集的准确度,这边应该是val_acc???
monitor='acc',
# 当准确率已经停止优化超过1个epochs,也就是2个epochs,训练将会被打断
patience=1,
),
# 这个callback将会在每个epoch后保存当前的权重
keras.callbacks.ModelCheckpoint(
filepath='my_model.h5',
# 下面2个参数意味着除非val_loss有优化,不然model文件不会被重写
monitor='val_loss',
save_best_only=True,
)
]
model = Model()
# 因为我们监测acc指标,acc应该成为一个度量标准
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
'''
model.fit(x, y,
epochs=10,
batch_size=32,
callbacks=callbacks_list,
validation_data=(x_val, y_val))
'''
# 使用ReduceLROnPlateau
callbacks_list = [
keras.callbacks.ReduceLROnPlateau(
# 监测验证集的loss
monitor='val_loss',
# 触发时把学习速率除以10
factor=0.1,
# 在验证集loss停止优化10个epochs时触发
patience=10,
)
]