forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSILCombinerCastVisitors.cpp
1334 lines (1207 loc) · 52.3 KB
/
SILCombinerCastVisitors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SILCombinerCastVisitors.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
using namespace swift::PatternMatch;
SILInstruction *
SILCombiner::visitRefToRawPointerInst(RefToRawPointerInst *rrpi) {
if (auto *urci = dyn_cast<UncheckedRefCastInst>(rrpi->getOperand())) {
// In this optimization, we try to move ref_to_raw_pointer up the def-use
// graph. E.x.:
//
// ```
// %0 = ...
// %1 = unchecked_ref_cast %0
// %2 = ref_to_raw_pointer %1
// ```
//
// to:
//
// ```
// %0 = ...
// %2 = ref_to_raw_pointer %0
// %1 = unchecked_ref_cast %0
// ```
//
// If we find that the unchecked_ref_cast has no uses, we then eliminate
// it.
//
// Naturally, this requires us to always hoist our new instruction (or
// modified instruction) to before the unchecked_ref_cast.
//
// First we handle the case where we have a class type where we do not need
// to insert a new instruction.
if (urci->getOperand()->getType().isAnyClassReferenceType()) {
rrpi->setOperand(urci->getOperand());
rrpi->moveBefore(urci);
return urci->use_empty() ? eraseInstFromFunction(*urci) : nullptr;
}
// Otherwise, we ened to use an unchecked_trivial_bit_cast insert it at
// urci.
//
// (ref_to_raw_pointer (unchecked_ref_cast x))
// -> (unchecked_trivial_bit_cast x)
auto *utbi = withBuilder(urci, [&](auto &b, auto l) {
return b.createUncheckedTrivialBitCast(l, urci->getOperand(),
rrpi->getType());
});
rrpi->replaceAllUsesWith(utbi);
eraseInstFromFunction(*rrpi);
return urci->use_empty() ? eraseInstFromFunction(*urci) : nullptr;
}
// (ref_to_raw_pointer (open_existential_ref (init_existential_ref x))) ->
// (ref_to_raw_pointer x)
//
// In terms of ownership, we need to insert this at the init_existential to
// ensure that x is live if we have an owned value.
if (auto *oeri = dyn_cast<OpenExistentialRefInst>(rrpi->getOperand())) {
if (auto *ieri = dyn_cast<InitExistentialRefInst>(oeri->getOperand())) {
auto *utbi = withBuilder(ieri, [&](auto &b, auto l) {
return b.createRefToRawPointer(l, ieri->getOperand(), rrpi->getType());
});
rrpi->replaceAllUsesWith(utbi);
return eraseInstFromFunction(*rrpi);
}
}
return nullptr;
}
namespace {
/// A folder object for sequences of forwarding instructions that forward owned
/// ownership. Is used to detect if we can delete the intermediate forwarding
/// instructions without ownership issues and then allows the user to either
/// delete all of the rest of the forwarding instructions and then replace front
/// with a new value or set front's operand to a new value.
class SingleBlockOwnedForwardingInstFolder {
SmallVector<SingleValueInstruction *, 4> rest;
SILCombiner &SC;
SingleValueInstruction *front;
public:
SingleBlockOwnedForwardingInstFolder(
SILCombiner &SC, SingleValueInstruction *instructionToFold)
: SC(SC), front(instructionToFold) {
// If our initial instruction to fold isn't owned, set it to nullptr to
// indicate invalid.
if (SILValue(instructionToFold)->getOwnershipKind() != OwnershipKind::Owned)
front = nullptr;
}
bool isValid() const { return bool(front); }
bool add(SingleValueInstruction *next) {
assert(isValid());
if (SILValue(next)->getOwnershipKind() != OwnershipKind::Owned)
return false;
if (next->getSingleUse()) {
rest.push_back(next);
return true;
}
if (front->getParent() != next->getParent()) {
return false;
}
// Otherwise, since the two values are in the same block and we want to
// optimize only if our original value doesn't have any non-debug uses, we
// know that our value can only have a single non-debug use, the consuming
// user. So if we are not in that situation, bail.
if (!hasOneNonDebugUse(next))
return false;
assert(rest.empty() || getSingleNonDebugUser(rest.back()) == next);
rest.push_back(next);
return true;
}
/// Delete all forwarding uses and then RAUW front with newValue.
SingleValueInstruction *optimizeWithReplacement(SILValue newValue) && {
// NOTE: Even though after running cleanup rest, front now has its
// forwarding operand set to Undef, we haven't touched its result. So it is
// safe to RAUW.
cleanupRest();
SC.replaceValueUsesWith(front, newValue);
return nullptr;
}
/// Delete all forwarding uses and then set front's first operand to be \p
/// newValue.
SingleValueInstruction *optimizeWithSetValue(SILValue newValue) && {
cleanupRest();
assert(isa<SILUndef>(front->getOperand(0)));
front->setOperand(0, newValue);
SC.setUseValue(&front->getOperandRef(0), newValue);
return nullptr;
}
private:
/// Processing from def->use by walking rest backwards, delete all of its
/// debug uses and then set its single remaining use to be SILUndef.
///
/// This means that after this runs front's forwarding operand is now
/// SILUndef.
void cleanupRest() & {
// We process from def->use. This cleans up everything but the front value.
while (!rest.empty()) {
auto *inst = rest.pop_back_val();
deleteAllDebugUses(inst, SC.getInstModCallbacks());
auto *next = inst->getSingleUse();
assert(next);
assert(rest.empty() || bool(next->getUser() == rest.back()));
next->set(SILUndef::get(next->get()->getType(), inst->getModule()));
SC.eraseInstFromFunction(*inst);
}
}
};
} // namespace
SILInstruction *SILCombiner::visitUpcastInst(UpcastInst *uci) {
auto operand = uci->getOperand();
// %operandUpcast = upcast %0 : $X->Y
// %upcastInst = upcast %operandUpcast : $Y->Z
//
// %operandUpcast = upcast %0 : $X->Y
// %1 = upcast %0 : $X->Z
//
// If operandUpcast does not have any further uses, we delete it.
if (auto *operandAsUpcast = dyn_cast<UpcastInst>(operand)) {
if (operand->getOwnershipKind() != OwnershipKind::Owned) {
uci->setOperand(operandAsUpcast->getOperand());
return operandAsUpcast->use_empty()
? eraseInstFromFunction(*operandAsUpcast)
: nullptr;
}
SingleBlockOwnedForwardingInstFolder folder(*this, uci);
if (folder.add(operandAsUpcast)) {
return std::move(folder).optimizeWithSetValue(
operandAsUpcast->getOperand());
}
}
return nullptr;
}
// Optimize Builtin.assumeAlignment -> pointer_to_address
//
// Case #1. Literal zero = natural alignment
// %1 = integer_literal $Builtin.Int64, 0
// %2 = builtin "assumeAlignment"
// (%0 : $Builtin.RawPointer, %1 : $Builtin.Int64) : $Builtin.RawPointer
// %3 = pointer_to_address %2 : $Builtin.RawPointer to [align=1] $*Int
//
// Erases the `pointer_to_address` `[align=]` attribute:
//
// Case #2. Literal nonzero = forced alignment.
//
// %1 = integer_literal $Builtin.Int64, 16
// %2 = builtin "assumeAlignment"
// (%0 : $Builtin.RawPointer, %1 : $Builtin.Int64) : $Builtin.RawPointer
// %3 = pointer_to_address %2 : $Builtin.RawPointer to [align=1] $*Int
//
// Promotes the `pointer_to_address` `[align=]` attribute to a higher value.
//
// Case #3. Folded dynamic alignment
//
// %1 = builtin "alignof"<T>(%0 : $@thin T.Type) : $Builtin.Word
// %2 = builtin "assumeAlignment"
// (%0 : $Builtin.RawPointer, %1 : $Builtin.Int64) : $Builtin.RawPointer
// %3 = pointer_to_address %2 : $Builtin.RawPointer to [align=1] $*T
//
// Erases the `pointer_to_address` `[align=]` attribute.
SILInstruction *
SILCombiner::optimizeAlignment(PointerToAddressInst *ptrAdrInst) {
if (!ptrAdrInst->alignment())
return nullptr;
llvm::Align oldAlign = ptrAdrInst->alignment().valueOrOne();
// TODO: stripCasts(ptrAdrInst->getOperand()) can be used to find the Builtin,
// but then the Builtin could not be trivially removed. Ideally,
// Builtin.assume will be the immediate operand so it can be removed in the
// common case.
BuiltinInst *assumeAlign = dyn_cast<BuiltinInst>(ptrAdrInst->getOperand());
if (!assumeAlign
|| assumeAlign->getBuiltinKind() != BuiltinValueKind::AssumeAlignment) {
return nullptr;
}
SILValue ptrSrc = assumeAlign->getArguments()[0];
SILValue alignOper = assumeAlign->getArguments()[1];
if (auto *integerInst = dyn_cast<IntegerLiteralInst>(alignOper)) {
llvm::MaybeAlign newAlign(integerInst->getValue().getLimitedValue());
if (newAlign && newAlign.valueOrOne() <= oldAlign)
return nullptr;
// Case #1: the pointer is assumed naturally aligned
//
// Or Case #2: the pointer is assumed to have non-zero alignment greater
// than it current alignment.
//
// In either case, rewrite the address alignment with the assumed alignment,
// and bypass the Builtin.assumeAlign.
return Builder.createPointerToAddress(
ptrAdrInst->getLoc(), ptrSrc, ptrAdrInst->getType(),
ptrAdrInst->isStrict(), ptrAdrInst->isInvariant(), newAlign);
}
// Handle possible 32-bit sign-extension.
SILValue extendedAlignment;
if (match(alignOper,
m_ApplyInst(BuiltinValueKind::SExtOrBitCast,
m_ApplyInst(BuiltinValueKind::TruncOrBitCast,
m_SILValue(extendedAlignment))))) {
alignOper = extendedAlignment;
}
if (match(alignOper,
m_ApplyInst(BuiltinValueKind::Alignof))) {
CanType formalType = cast<BuiltinInst>(alignOper)->getSubstitutions()
.getReplacementTypes()[0]->getReducedType(
ptrAdrInst->getFunction()->getGenericSignature());
SILType instanceType = ptrAdrInst->getFunction()->getLoweredType(
Lowering::AbstractionPattern::getOpaque(), formalType);
if (instanceType.getAddressType() != ptrAdrInst->getType())
return nullptr;
// Case #3: the alignOf type matches the address type. Convert to a
// naturally aligned pointer by erasing alignment and bypassing the
// Builtin.assumeAlign.
return Builder.createPointerToAddress(
ptrAdrInst->getLoc(), ptrSrc, ptrAdrInst->getType(),
ptrAdrInst->isStrict(), ptrAdrInst->isInvariant());
}
return nullptr;
}
SILInstruction *
SILCombiner::
visitPointerToAddressInst(PointerToAddressInst *PTAI) {
auto *F = PTAI->getFunction();
Builder.setCurrentDebugScope(PTAI->getDebugScope());
// If we reach this point, we know that the types must be different since
// otherwise simplifyInstruction would have handled the identity case. This is
// always legal to do since address-to-pointer pointer-to-address implies
// layout compatibility.
//
// (pointer-to-address strict (address-to-pointer %x))
// -> (unchecked_addr_cast %x)
if (PTAI->isStrict()) {
// We can not perform this optimization with ownership until we are able to
// handle issues around interior pointers and expanding borrow scopes.
if (auto *ATPI = dyn_cast<AddressToPointerInst>(PTAI->getOperand())) {
if (!hasOwnership()) {
return Builder.createUncheckedAddrCast(PTAI->getLoc(),
ATPI->getOperand(),
PTAI->getType());
}
OwnershipRAUWHelper helper(ownershipFixupContext, PTAI,
ATPI->getOperand());
if (helper) {
auto replacement = helper.prepareReplacement();
auto *newInst = Builder.createUncheckedAddrCast(
PTAI->getLoc(), replacement, PTAI->getType());
helper.perform(newInst);
return nullptr;
}
}
}
// The rest of these canonicalizations optimize the code around
// pointer_to_address by leave in a pointer_to_address meaning that we do not
// need to worry about moving addresses out of interior pointer scopes.
// Turn this also into an index_addr. We generate this pattern after switching
// the Word type to an explicit Int32 or Int64 in the stdlib.
//
// %101 = builtin "strideof"<Int>(%84 : $@thick Int.Type) :
// $Builtin.Word
// %102 = builtin "zextOrBitCast_Word_Int64"(%101 : $Builtin.Word) :
// $Builtin.Int64
// %111 = builtin "smul_with_overflow_Int64"(%108 : $Builtin.Int64,
// %102 : $Builtin.Int64, %20 : $Builtin.Int1) :
// $(Builtin.Int64, Builtin.Int1)
// %112 = tuple_extract %111 : $(Builtin.Int64, Builtin.Int1), 0
// %113 = builtin "truncOrBitCast_Int64_Word"(%112 : $Builtin.Int64) :
// $Builtin.Word
// %114 = index_raw_pointer %100 : $Builtin.RawPointer, %113 : $Builtin.Word
// %115 = pointer_to_address %114 : $Builtin.RawPointer to [strict] $*Int
//
// This is safe for ownership since our final SIL still has a
// pointer_to_address meaning that we do not need to worry about interior
// pointers.
SILValue Distance;
SILValue TruncOrBitCast;
MetatypeInst *Metatype;
IndexRawPointerInst *IndexRawPtr;
BuiltinInst *StrideMul;
if (match(
PTAI->getOperand(),
m_IndexRawPointerInst(IndexRawPtr))) {
SILValue Ptr = IndexRawPtr->getOperand(0);
SILValue TruncOrBitCast = IndexRawPtr->getOperand(1);
if (match(TruncOrBitCast, m_ApplyInst(BuiltinValueKind::TruncOrBitCast,
m_TupleExtractOperation(
m_BuiltinInst(StrideMul), 0)))) {
if (match(StrideMul,
m_ApplyInst(
BuiltinValueKind::SMulOver, m_SILValue(Distance),
m_ApplyInst(BuiltinValueKind::ZExtOrBitCast,
m_ApplyInst(BuiltinValueKind::Strideof,
m_MetatypeInst(Metatype))))) ||
match(StrideMul,
m_ApplyInst(
BuiltinValueKind::SMulOver,
m_ApplyInst(BuiltinValueKind::ZExtOrBitCast,
m_ApplyInst(BuiltinValueKind::Strideof,
m_MetatypeInst(Metatype))),
m_SILValue(Distance)))) {
SILType InstanceType =
F->getLoweredType(Metatype->getType()
.castTo<MetatypeType>().getInstanceType());
auto *Trunc = cast<BuiltinInst>(TruncOrBitCast);
// Make sure that the type of the metatype matches the type that we are
// casting to so we stride by the correct amount.
if (InstanceType.getAddressType() != PTAI->getType()) {
return nullptr;
}
auto *NewPTAI = Builder.createPointerToAddress(PTAI->getLoc(), Ptr,
PTAI->getType(),
PTAI->isStrict(),
PTAI->isInvariant());
auto DistanceAsWord = Builder.createBuiltin(
PTAI->getLoc(), Trunc->getName(), Trunc->getType(), {}, Distance);
return Builder.createIndexAddr(PTAI->getLoc(), NewPTAI, DistanceAsWord,
/*needsStackProtection=*/ false);
}
}
}
// Turn:
//
// %stride = Builtin.strideof(T) * %distance
// %ptr' = index_raw_pointer %ptr, %stride
// %result = pointer_to_address %ptr, [strict] $T'
//
// To:
//
// %addr = pointer_to_address %ptr, [strict] $T
// %result = index_addr %addr, %distance
//
// This is safe for ownership since our final SIL still has a
// pointer_to_address meaning that we do not need to worry about interior
// pointers.
BuiltinInst *Bytes = nullptr;
if (match(PTAI->getOperand(),
m_IndexRawPointerInst(
m_ValueBase(),
m_TupleExtractOperation(m_BuiltinInst(Bytes), 0)))) {
assert(Bytes != nullptr &&
"Bytes should have been assigned a non-null value");
if (match(Bytes, m_ApplyInst(BuiltinValueKind::SMulOver, m_ValueBase(),
m_ApplyInst(BuiltinValueKind::Strideof,
m_MetatypeInst(Metatype)),
m_ValueBase()))) {
SILType InstanceType =
F->getLoweredType(Metatype->getType()
.castTo<MetatypeType>().getInstanceType());
// Make sure that the type of the metatype matches the type that we are
// casting to so we stride by the correct amount.
if (InstanceType.getAddressType() != PTAI->getType())
return nullptr;
auto IRPI = cast<IndexRawPointerInst>(PTAI->getOperand());
SILValue Ptr = IRPI->getOperand(0);
SILValue Distance = Bytes->getArguments()[0];
auto *NewPTAI =
Builder.createPointerToAddress(PTAI->getLoc(), Ptr, PTAI->getType(),
PTAI->isStrict(), PTAI->isInvariant());
return Builder.createIndexAddr(PTAI->getLoc(), NewPTAI, Distance,
/*needsStackProtection=*/ false);
}
}
return optimizeAlignment(PTAI);
}
SILInstruction *
SILCombiner::visitUncheckedAddrCastInst(UncheckedAddrCastInst *UADCI) {
// These are always safe to perform due to interior pointer ownership
// requirements being transitive along addresses.
Builder.setCurrentDebugScope(UADCI->getDebugScope());
// (unchecked_addr_cast (unchecked_addr_cast x X->Y) Y->Z)
// ->
// (unchecked_addr_cast x X->Z)
if (auto *OtherUADCI = dyn_cast<UncheckedAddrCastInst>(UADCI->getOperand()))
return Builder.createUncheckedAddrCast(UADCI->getLoc(),
OtherUADCI->getOperand(),
UADCI->getType());
return nullptr;
}
SILInstruction *
SILCombiner::visitUncheckedRefCastInst(UncheckedRefCastInst *urci) {
// %0 = unchecked_ref_cast %x : $X->Y
// %1 = unchecked_ref_cast %0 : $Y->Z
//
// ->
//
// %0 = unchecked_ref_cast %x : $X->Y
// %1 = unchecked_ref_cast %x : $X->Z
//
// NOTE: For owned values, we only perform this optimization if we can
// guarantee that we can eliminate the initial unchecked_ref_cast.
if (auto *otherURCI = dyn_cast<UncheckedRefCastInst>(urci->getOperand())) {
SILValue otherURCIOp = otherURCI->getOperand();
if (otherURCIOp->getOwnershipKind() != OwnershipKind::Owned) {
return Builder.createUncheckedRefCast(urci->getLoc(), otherURCIOp,
urci->getType());
}
SingleBlockOwnedForwardingInstFolder folder(*this, urci);
if (folder.add(otherURCI)) {
auto *newValue = Builder.createUncheckedRefCast(
urci->getLoc(), otherURCIOp, urci->getType());
return std::move(folder).optimizeWithReplacement(newValue);
}
}
// %0 = upcast %x : $X->Y
// %1 = unchecked_ref_cast %0 : $Y->Z
//
// ->
//
// %0 = upcast %x : $X->Y
// %1 = unchecked_ref_cast %x : $X->Z
//
// NOTE: For owned values, we only perform this optimization if we can
// guarantee that we can eliminate the upcast.
if (auto *ui = dyn_cast<UpcastInst>(urci->getOperand())) {
SILValue uiOp = ui->getOperand();
if (uiOp->getOwnershipKind() != OwnershipKind::Owned) {
return Builder.createUncheckedRefCast(urci->getLoc(), uiOp,
urci->getType());
}
SingleBlockOwnedForwardingInstFolder folder(*this, urci);
if (folder.add(ui)) {
auto *newValue =
Builder.createUncheckedRefCast(urci->getLoc(), uiOp, urci->getType());
return std::move(folder).optimizeWithReplacement(newValue);
}
}
// This is an exact transform where we are replacing urci with an upcast on
// the same value. So from an ownership perspective because both instructions
// are forwarding and we are eliminating urci, we are safe.
if (urci->getType() != urci->getOperand()->getType() &&
urci->getType().isExactSuperclassOf(urci->getOperand()->getType()))
return Builder.createUpcast(urci->getLoc(), urci->getOperand(),
urci->getType());
// %0 = init_existential_ref %x : $X -> Existential
// %1 = open_existential_ref %0 : $Existential -> @opened() Existential
// %2 = unchecked_ref_cast %1
//
// ->
//
// %0 = init_existential_ref %x : $X -> Existential
// %1 = open_existential_ref %0 : $Existential -> @opened() Existential
// %2 = unchecked_ref_cast %x
//
// NOTE: When we have an owned value, we only perform this optimization if we
// can remove both the open_existential_ref and the init_existential_ref.
if (auto *oer = dyn_cast<OpenExistentialRefInst>(urci->getOperand())) {
if (auto *ier = dyn_cast<InitExistentialRefInst>(oer->getOperand())) {
if (ier->getForwardingOwnershipKind() != OwnershipKind::Owned) {
return Builder.createUncheckedRefCast(urci->getLoc(), ier->getOperand(),
urci->getType());
}
SingleBlockOwnedForwardingInstFolder folder(*this, urci);
if (folder.add(oer) && folder.add(ier)) {
auto *newValue = Builder.createUncheckedRefCast(
urci->getLoc(), ier->getOperand(), urci->getType());
return std::move(folder).optimizeWithReplacement(newValue);
}
}
}
return nullptr;
}
SILInstruction *SILCombiner::visitEndCOWMutationInst(EndCOWMutationInst *ECM) {
// Remove a cast if it's only used by an end_cow_mutation.
//
// (end_cow_mutation (upcast X)) -> (end_cow_mutation X)
// (end_cow_mutation (unchecked_ref_cast X)) -> (end_cow_mutation X)
SILValue op = ECM->getOperand();
if (!isa<UncheckedRefCastInst>(op) && !isa<UpcastInst>(op))
return nullptr;
if (!op->hasOneUse())
return nullptr;
SingleValueInstruction *refCast = cast<SingleValueInstruction>(op);
auto *newECM = Builder.createEndCOWMutation(ECM->getLoc(),
refCast->getOperand(0));
ECM->replaceAllUsesWith(refCast);
refCast->setOperand(0, newECM);
refCast->moveAfter(newECM);
return eraseInstFromFunction(*ECM);
}
SILInstruction *
SILCombiner::visitBridgeObjectToRefInst(BridgeObjectToRefInst *bori) {
// Fold noop casts through Builtin.BridgeObject.
//
// (bridge_object_to_ref (unchecked-ref-cast x BridgeObject) y)
// -> (unchecked-ref-cast x y)
if (auto *urc = dyn_cast<UncheckedRefCastInst>(bori->getOperand())) {
if (SILValue(urc)->getOwnershipKind() != OwnershipKind::Owned) {
return Builder.createUncheckedRefCast(
bori->getLoc(), urc->getOperand(), bori->getType());
}
SingleBlockOwnedForwardingInstFolder folder(*this, bori);
if (folder.add(urc)) {
auto *newValue = Builder.createUncheckedRefCast(
bori->getLoc(), urc->getOperand(), bori->getType());
return std::move(folder).optimizeWithReplacement(newValue);
}
}
return nullptr;
}
SILInstruction *
SILCombiner::visitUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *urci) {
// Promote unchecked_ref_cast_addr in between two loadable values to
// unchecked_ref_cast upon objects.
//
// NOTE: unchecked_ref_cast_addr is a taking operation, so we simulate that
// with objects.
SILType srcTy = urci->getSrc()->getType();
if (!srcTy.isLoadable(*urci->getFunction()))
return nullptr;
SILType destTy = urci->getDest()->getType();
if (!destTy.isLoadable(*urci->getFunction()))
return nullptr;
// After promoting unchecked_ref_cast_addr to unchecked_ref_cast, the SIL
// verifier will assert that the loadable source and dest type of reference
// castable. If the static types are invalid, simply avoid promotion, that way
// the runtime will then report a failure if this cast is ever executed.
if (!SILType::canRefCast(srcTy.getObjectType(), destTy.getObjectType(),
urci->getModule()))
return nullptr;
SILLocation loc = urci->getLoc();
Builder.setCurrentDebugScope(urci->getDebugScope());
SILValue load = Builder.emitLoadValueOperation(loc, urci->getSrc(),
LoadOwnershipQualifier::Take);
assert(SILType::canRefCast(load->getType(), destTy.getObjectType(),
Builder.getModule()) &&
"SILBuilder cannot handle reference-castable types");
auto *cast = Builder.createUncheckedRefCast(loc, load,
destTy.getObjectType());
Builder.emitStoreValueOperation(loc, cast, urci->getDest(),
StoreOwnershipQualifier::Init);
return eraseInstFromFunction(*urci);
}
template <class CastInst>
static bool canBeUsedAsCastDestination(SILValue value, CastInst *castInst,
DominanceAnalysis *DA) {
return value &&
value->getType() == castInst->getTargetLoweredType().getObjectType() &&
DA->get(castInst->getFunction())->properlyDominates(value, castInst);
}
SILInstruction *SILCombiner::visitUnconditionalCheckedCastAddrInst(
UnconditionalCheckedCastAddrInst *uccai) {
// Optimize the unconditional_checked_cast_addr in the following non-ossa/ossa
// pattern:
//
// Non-OSSA Pattern
//
// %value = ...
// ...
// %box = alloc_existential_box $Error, $ConcreteError
// %a = project_existential_box $ConcreteError in %b : $Error
// store %value to %a : $*ConcreteError
// %err = alloc_stack $Error
// store %box to %err : $*Error
// %dest = alloc_stack $ConcreteError
// unconditional_checked_cast_addr Error in %err : $*Error to
// ConcreteError in %dest : $*ConcreteError
//
// to:
//
// retain_value %value : $ConcreteError
// ...
// %box = alloc_existential_box $Error, $ConcreteError
// %a = project_existential_box $ConcreteError in %b : $Error
// store %value to %a : $*ConcreteError
// %err = alloc_stack $Error
// store %box to %err : $*Error
// destroy_addr %err : $*Error
// store %value to %dest $*ConcreteError
//
// OSSA Pattern:
//
// %value = ...
// ...
// %box = alloc_existential_box $Error, $ConcreteError
// %a = project_existential_box $ConcreteError in %b : $Error
// store %value to [init] %a : $*ConcreteError
// %err = alloc_stack $Error
// store %box to [init] %err : $*Error
// %dest = alloc_stack $ConcreteError
// unconditional_checked_cast_addr Error in %err : $*Error to
// ConcreteError in %dest : $*ConcreteError
//
// to:
//
// %value_copy = copy_value %value
// ...
// %box = alloc_existential_box $Error, $ConcreteError
// %a = project_existential_box $ConcreteError in %b : $Error
// store %value to [init] %a : $*ConcreteError
// %err = alloc_stack $Error
// store %box to [init] %err : $*Error
// destroy_addr %err : $*Error
// store %value to %dest $*ConcreteError
//
// In both cases, this lets the alloc_existential_box become dead and it can
// be removed in other subsequent optimizations.
SILValue val = getConcreteValueOfExistentialBoxAddr(uccai->getSrc(), uccai);
while (auto *cvi = dyn_cast_or_null<CopyValueInst>(val))
val = cvi->getOperand();
if (canBeUsedAsCastDestination(val, uccai, DA)) {
// We need to copy the value at its insertion point.
{
auto *nextInsertPt = val->getNextInstruction();
if (!nextInsertPt)
return nullptr;
// If our value is defined by an instruction (not an argument), we want to
// insert the copy after that. Otherwise, we have an argument and we want
// to insert the copy right at the beginning of the block.
SILBuilderWithScope builder(nextInsertPt, Builder);
// We use an autogenerated location to ensure that if next is a
// terminator, we do not trip an assertion around mismatched debug info.
//
// FIXME: We should find a better way of solving this than losing location
// info!
auto loc = RegularLocation::getAutoGeneratedLocation();
val = builder.emitCopyValueOperation(loc, val);
}
// Then we insert the destroy addr/store at the cast location.
SILBuilderWithScope builder(uccai, Builder);
SILLocation loc = uccai->getLoc();
builder.createDestroyAddr(loc, uccai->getSrc());
builder.emitStoreValueOperation(loc, val, uccai->getDest(),
StoreOwnershipQualifier::Init);
return eraseInstFromFunction(*uccai);
}
// Perform the purly type-based cast optimization.
if (CastOpt.optimizeUnconditionalCheckedCastAddrInst(uccai))
MadeChange = true;
return nullptr;
}
SILInstruction *
SILCombiner::
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI) {
CastOpt.optimizeUnconditionalCheckedCastInst(UCCI);
if (UCCI->isDeleted()) {
MadeChange = true;
return nullptr;
}
// FIXME: rename from RemoveCondFails to RemoveRuntimeAsserts.
if (RemoveCondFails) {
auto LoweredTargetType = UCCI->getType();
auto Loc = UCCI->getLoc();
auto Op = UCCI->getOperand();
if (LoweredTargetType.isAddress()) {
// unconditional_checked_cast -> unchecked_addr_cast
return Builder.createUncheckedAddrCast(Loc, Op, LoweredTargetType);
} else if (LoweredTargetType.isHeapObjectReferenceType()) {
if (!(Op->getType().isHeapObjectReferenceType() ||
Op->getType().isClassExistentialType())) {
return nullptr;
}
// unconditional_checked_cast -> unchecked_ref_cast
return Builder.createUncheckedRefCast(Loc, Op, LoweredTargetType);
}
}
return nullptr;
}
SILInstruction *
SILCombiner::visitRawPointerToRefInst(RawPointerToRefInst *rawToRef) {
// (raw_pointer_to_ref (ref_to_raw_pointer x X->Y) Y->Z)
// ->
// (unchecked_ref_cast x X->Z)
if (auto *refToRaw = dyn_cast<RefToRawPointerInst>(rawToRef->getOperand())) {
if (!hasOwnership()) {
return Builder.createUncheckedRefCast(
rawToRef->getLoc(), refToRaw->getOperand(), rawToRef->getType());
}
// raw_pointer_to_ref produces an unowned value. So we need to handle it
// especially with ownership.
{
SILValue originalRef = refToRaw->getOperand();
OwnershipRAUWHelper helper(ownershipFixupContext, rawToRef, originalRef);
if (helper) {
// Since we are using std::next, we use getAutogeneratedLocation to
// avoid any issues if our next insertion point is a terminator.
auto loc = RegularLocation::getAutoGeneratedLocation();
auto replacement = helper.prepareReplacement();
auto *newInst = Builder.createUncheckedRefCast(
loc, replacement, rawToRef->getType());
// If we have an operand with ownership, we need to change our
// unchecked_ref_cast to produce an unowned value. This is because
// otherwise, our unchecked_ref_cast will consume the underlying owned
// value, changing a BitwiseEscape to a LifetimeEnding use?! In
// contrast, for guaranteed, we are replacing a BitwiseEscape use
// (ref_to_rawpointer) with a ForwardedBorrowingUse (unchecked_ref_cast)
// which is safe.
if (newInst->getForwardingOwnershipKind() == OwnershipKind::Owned) {
newInst->setForwardingOwnershipKind(OwnershipKind::Unowned);
}
helper.perform(newInst);
return nullptr;
}
}
}
return nullptr;
}
SILInstruction *SILCombiner::visitUncheckedTrivialBitCastInst(
UncheckedTrivialBitCastInst *utbci) {
// (unchecked_trivial_bit_cast Y->Z
// (unchecked_trivial_bit_cast X->Y x))
// ->
// (unchecked_trivial_bit_cast X->Z x)
SILValue operand = utbci->getOperand();
if (auto *otherUTBCI = dyn_cast<UncheckedTrivialBitCastInst>(operand)) {
return Builder.createUncheckedTrivialBitCast(
utbci->getLoc(), otherUTBCI->getOperand(), utbci->getType());
}
// %y = unchecked_ref_cast %x X->Y
// ...
// %z = unchecked_trivial_bit_cast %y Y->Z
//
// ->
//
// %z = unchecked_trivial_bit_cast %x X->Z
// %y = unchecked_ref_cast %x X->Y
// ...
if (auto *urbci = dyn_cast<UncheckedRefCastInst>(operand)) {
// We just move the unchecked_trivial_bit_cast to before the
// unchecked_ref_cast and then make its operand the unchecked_ref_cast
// operand. Then we return the cast so we reprocess given that we changed
// its operands.
utbci->moveBefore(urbci);
utbci->setDebugLocation(urbci->getDebugLocation());
utbci->setOperand(urbci->getOperand());
return utbci;
}
return nullptr;
}
SILInstruction *
SILCombiner::
visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI) {
// (unchecked_bitwise_cast Y->Z (unchecked_bitwise_cast X->Y x))
// OR (unchecked_trivial_cast Y->Z (unchecked_bitwise_cast X->Y x))
// ->
// (unchecked_bitwise_cast X->Z x)
SILValue Oper;
if (match(UBCI->getOperand(),
m_CombineOr(m_UncheckedBitwiseCastInst(m_SILValue(Oper)),
m_UncheckedTrivialBitCastInst(m_SILValue(Oper))))) {
if (!Builder.hasOwnership()) {
return Builder.createUncheckedBitwiseCast(UBCI->getLoc(), Oper,
UBCI->getType());
}
OwnershipRAUWHelper helper(ownershipFixupContext, UBCI, Oper);
if (helper) {
auto replacement = helper.prepareReplacement();
auto *transformedOper = Builder.createUncheckedBitwiseCast(
UBCI->getLoc(), replacement, UBCI->getType());
helper.perform(transformedOper);
return nullptr;
}
}
if (UBCI->getType().isTrivial(*UBCI->getFunction())) {
// If our result is trivial, we can always just RAUW.
return Builder.createUncheckedTrivialBitCast(
UBCI->getLoc(), UBCI->getOperand(), UBCI->getType());
}
if (!SILType::canRefCast(UBCI->getOperand()->getType(), UBCI->getType(),
Builder.getModule()))
return nullptr;
// Normally, OwnershipRAUWHelper needs to be called to handle ownership of
// UBCI->getOperand(). However, we know that UBCI->getOperand() is already
// available at the point of the cast, and by forcing the cast to be Unowned,
// we ensure that no ownership adjustment is needed. So we can skip
// prepareReplacement completely and just drop in the replacement. That avoids
// an extra copy in the case that UBCI->getOperand() is Owned.
auto *refCast = Builder.createUncheckedRefCast(
UBCI->getLoc(), UBCI->getOperand(), UBCI->getType());
if (Builder.hasOwnership()) {
// A bitwise cast is always unowned, so we can safely force the reference
// cast to forward as unowned and no ownership adjustment is needed.
assert(UBCI->getOwnershipKind() == OwnershipKind::Unowned);
refCast->setForwardingOwnershipKind(OwnershipKind::Unowned);
}
return refCast;
}
SILInstruction *
SILCombiner::visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *TTOCMI) {
if (auto *OCTTMI = dyn_cast<ObjCToThickMetatypeInst>(TTOCMI->getOperand())) {
TTOCMI->replaceAllUsesWith(OCTTMI->getOperand());
return eraseInstFromFunction(*TTOCMI);
}
// Perform the following transformations:
// (thick_to_objc_metatype (metatype @thick)) ->
// (metatype @objc_metatype)
//
// (thick_to_objc_metatype (value_metatype @thick)) ->
// (value_metatype @objc_metatype)
//
// (thick_to_objc_metatype (existential_metatype @thick)) ->
// (existential_metatype @objc_metatype)
if (CastOpt.optimizeMetatypeConversion(ConversionOperation(TTOCMI),
MetatypeRepresentation::Thick))
MadeChange = true;
return nullptr;
}
SILInstruction *
SILCombiner::visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *OCTTMI) {
if (auto *TTOCMI = dyn_cast<ThickToObjCMetatypeInst>(OCTTMI->getOperand())) {
OCTTMI->replaceAllUsesWith(TTOCMI->getOperand());
return eraseInstFromFunction(*OCTTMI);
}
// Perform the following transformations:
// (objc_to_thick_metatype (metatype @objc_metatype)) ->
// (metatype @thick)
//
// (objc_to_thick_metatype (value_metatype @objc_metatype)) ->
// (value_metatype @thick)
//
// (objc_to_thick_metatype (existential_metatype @objc_metatype)) ->
// (existential_metatype @thick)
if (CastOpt.optimizeMetatypeConversion(ConversionOperation(OCTTMI),
MetatypeRepresentation::ObjC))
MadeChange = true;
return nullptr;
}
SILInstruction *
SILCombiner::visitCheckedCastBranchInst(CheckedCastBranchInst *CBI) {
if (CastOpt.optimizeCheckedCastBranchInst(CBI))
MadeChange = true;
return nullptr;
}
SILInstruction *
SILCombiner::
visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *CCABI) {
// Optimize the checked_cast_addr_br in this pattern:
//
// %box = alloc_existential_box $Error, $ConcreteError
// %a = project_existential_box $ConcreteError in %b : $Error
// store %value to %a : $*ConcreteError
// %err = alloc_stack $Error
// store %box to %err : $*Error
// %dest = alloc_stack $ConcreteError
// checked_cast_addr_br <consumption-kind> Error in %err : $*Error to
// ConcreteError in %dest : $*ConcreteError, success_bb, failing_bb
//
// to:
// ...
// retain_value %value : $ConcreteError
// destroy_addr %err : $*Error // if consumption-kind is take
// store %value to %dest $*ConcreteError
// br success_bb
//