forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLetPropertiesOpts.cpp
633 lines (550 loc) · 22.2 KB
/
LetPropertiesOpts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//===--- LetPropertiesOpts.cpp - Optimize let properties ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Promote values of non-static let properties initialized by means
// of constant values of simple types into their uses.
//
// For any given non-static let property this optimization is only possible
// if this pass can prove that it has analyzed all assignments of an initial
// value to this property and all those assignments assign the same value
// to this property.
//
// FIXME:
//
// This pass makes assumptions about the visibility of a type's memory
// based on the visibility of its properties. This is the wrong way to think
// about memory visibility.
//
// This pass wants assume that the contents of a property is known based on
// whether the property is declared as a 'let' and the visibility of the
// initializers that access the property. For example:
//
// public struct X<T> {
// public let hidden: T
//
// init(t: T) { self.hidden = t }
// }
//
// The pass currently assumes that `X` only takes on values that are
// assigned by the invocations of `X.init`, which is only visible in `X`s
// module. This is wrong if the layout of `Impl` is exposed to other
// modules. A struct's memory may be initialized by any module with
// access to the struct's layout.
//
// In fact, this assumption is wrong even if the struct, and it's let
// property cannot be accessed externally by name. In this next example,
// external modules cannot access `Impl` or `Impl.hidden` by name, but
// can still access the memory because the layout is exposed via a public type
// that contains it.
//
// ```
// internal struct Impl<T> {
// let hidden: T
//
// init(t: T) { self.hidden = t }
// }
//
// public struct Wrapper<T> {
// var impl: Impl<T>
//
// public var property: T {
// get {
// return impl.hidden
// }
// }
// }
// ```
//
// As long as `Wrapper`s layout is exposed to other modules, the contents of
// `Wrapper`, `Impl`, and `hidden' can all be initialized in another
// module. This following code is legal if Wrapper's home module is *not*
// built with library evolution (or if Wrapper is declared `@frozen`).
//
// func inExternalModule(buffer: UnsafeRawPointer) -> Wrapper<Int64> {
// return buffer.load(as: Wrapper<Int64>.self)
// }
//
// If library evolution is enabled and a `public` struct is not declared
// `@frozen` then external modules cannot assume its layout, and therefore
// cannot initialize the struct memory. In that case, it is possible to optimize
// `X.hidden` and `Impl.hidden` as if the properties are only initialized inside
// their home module.
//
// The right way to view a type's memory visibility is to consider whether
// external modules have access to the layout of the type. If not, then the
// property can still be optimized As long as a struct is never enclosed in a
// public effectively-`@frozen` type. However, finding all places where a struct
// is explicitly created is still insufficient. Instead, the optimization needs
// to find all uses of enclosing types and determine if every use has a known
// constant initialization, or is simply copied from another value. If an
// escaping unsafe pointer to any enclosing type is created, then the
// optimization is not valid.
//
// When viewed this way, the fact that a property is declared 'let' is mostly
// irrelevant to this optimization--it can be expanded to handle non-'let'
// properties. The more salient feature is whether the property has a public
// setter.
//
// For now, this optimization only recognizes class properties because class
// properties are only accessibly via a ref_element_addr instruction. This is a
// side effect of the fact that accessing a class property requires a "formal
// access". This means that begin_access marker must be emitted directly on the
// address produced by a ref_element_addr. Struct properties are not handled, as
// explained above, because they can be indirectly accessed via addresses of
// outer types.
//
// Note: Propagating the initialized constants of non-addressable aggregate
// values (formation of 'struct's and 'tuple's) is a significantly different
// problem. It can be done better in a separate constant-propagation pass that
// propagates partial-constants into call arguments and out of returned values.
// ===---------------------------------------------------------------------===//
#define DEBUG_TYPE "let-properties-opt"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
using InstructionList = SmallVector<SILInstruction *, 8>;
struct InitSequence {
InstructionList Instructions;
SILValue Result;
bool isValid() const {
return (bool) Result;
}
};
/// Promote values of non-static let properties initialized by means
/// of constant values of simple types into their uses.
///
/// TODO: Don't occupy any storage for such let properties with constant
/// initializers.
///
/// Note: Storage from a 'let' property can only be removed if this property if
/// the type is resilient (not fixed-layout) and the property cannot be read
/// from another module.
class LetPropertiesOpt {
SILModule *Module;
typedef SmallVector<VarDecl *, 4> Properties;
llvm::SetVector<SILFunction *> ChangedFunctions;
// Map each let property to a set of instructions accessing it.
llvm::MapVector<VarDecl *, InstructionList> AccessMap;
// Map each let property to the instruction sequence which initializes it.
llvm::MapVector<VarDecl *, InitSequence> InitMap;
// Properties in this set should not be processed by this pass
// anymore.
llvm::SmallPtrSet<VarDecl *, 16> SkipProcessing;
// Types in this set should not be processed by this pass
// anymore.
llvm::SmallPtrSet<NominalTypeDecl *, 16> SkipTypeProcessing;
// Properties in this set cannot be removed.
llvm::SmallPtrSet<VarDecl *, 16> CannotRemove;
// Set of let properties in a given nominal type.
llvm::MapVector<NominalTypeDecl *, Properties> NominalTypeLetProperties;
// Set of properties which already fulfill all conditions, except
// the available of constant, statically known initializer.
llvm::SmallPtrSet<VarDecl *, 16> PotentialConstantLetProperty;
public:
LetPropertiesOpt(SILModule *M): Module(M) {}
void run(SILModuleTransform *T);
protected:
bool isConstantLetProperty(VarDecl *Property);
void collectPropertyAccess(SingleValueInstruction *I, VarDecl *Property,
bool NonRemovable);
void optimizeLetPropertyAccess(VarDecl *SILG, const InitSequence &Init);
bool analyzeInitValue(SILInstruction *I, VarDecl *Prop);
};
/// Helper class to copy only a set of SIL instructions providing in the
/// constructor.
class InitSequenceCloner : public SILClonerWithScopes<InitSequenceCloner> {
friend class SILInstructionVisitor<InitSequenceCloner>;
friend class SILCloner<InitSequenceCloner>;
const InitSequence &Init;
public:
InitSequenceCloner(const InitSequence &init, SILInstruction *destIP)
: SILClonerWithScopes(*destIP->getFunction()), Init(init) {
Builder.setInsertionPoint(destIP);
}
void process(SILInstruction *I) { visit(I); }
SILBasicBlock *remapBasicBlock(SILBasicBlock *BB) { return BB; }
SILValue getMappedValue(SILValue Value) {
return SILCloner<InitSequenceCloner>::getMappedValue(Value);
}
/// Clone all the instructions from Insns into the destination function,
/// immediately before the destination block, and return the value of
/// the result.
SILValue clone() {
for (auto I : Init.Instructions)
process(I);
return getMappedValue(Init.Result);
}
};
} // end anonymous namespace
#ifndef NDEBUG
// For debugging only.
static raw_ostream &operator<<(raw_ostream &OS, const VarDecl &decl) {
auto *Ty = dyn_cast<NominalTypeDecl>(decl.getDeclContext());
if (Ty)
OS << Ty->getName() << "::";
OS << decl.getName();
return OS;
}
#endif
/// Optimize access to the let property, which is known
/// to have a constant value. Replace all loads from the
/// property by its constant value.
void LetPropertiesOpt::optimizeLetPropertyAccess(VarDecl *Property,
const InitSequence &init) {
assert(init.isValid());
if (SkipProcessing.count(Property))
return;
auto *Ty = dyn_cast<NominalTypeDecl>(Property->getDeclContext());
if (SkipTypeProcessing.count(Ty))
return;
LLVM_DEBUG(llvm::dbgs() << "Replacing access to property '" << *Property
<< "' by its constant initializer\n");
auto PropertyAccess = Property->getEffectiveAccess();
auto TypeAccess = Ty->getEffectiveAccess();
auto CanRemove = false;
// Check if a given let property can be removed, because it
// is not accessible elsewhere. This can happen if this property
// is private or if it is internal and WMO mode is used.
if (TypeAccess <= AccessLevel::FilePrivate ||
PropertyAccess <= AccessLevel::FilePrivate
|| ((TypeAccess <= AccessLevel::Internal ||
PropertyAccess <= AccessLevel::Internal) &&
Module->isWholeModule())) {
CanRemove = true;
LLVM_DEBUG(llvm::dbgs() << "Storage for property '" << *Property
<< "' can be eliminated\n");
}
if (CannotRemove.count(Property))
CanRemove = false;
if (!AccessMap.count(Property)) {
LLVM_DEBUG(llvm::dbgs() << "Property '" << *Property <<"' is never read\n");
if (CanRemove) {
// TODO: Remove the let property, because it is never accessed.
}
return;
}
InstructionDeleter deleter;
auto &Loads = AccessMap[Property];
unsigned NumReplaced = 0;
for (auto Load: Loads) {
SILFunction *F = Load->getFunction();
// A helper function to copy the initializer into the target function
// at the target insertion point.
auto cloneInitAt = [&](SILInstruction *insertionPoint) -> SILValue {
InitSequenceCloner cloner(init, insertionPoint);
return cloner.clone();
};
// Look for any instructions accessing let properties.
auto *proj = cast<RefElementAddrInst>(Load);
// Copy the initializer into the function
// Replace the access to a let property by the value
// computed by this initializer.
SILValue clonedInit = cloneInitAt(proj);
for (auto UI = proj->use_begin(), E = proj->use_end(); UI != E;) {
auto *User = UI->getUser();
++UI;
if (!canReplaceLoadSequence(User))
continue;
replaceLoadSequence(User, clonedInit);
deleter.forceDeleteWithUsers(User);
++NumReplaced;
}
ChangedFunctions.insert(F);
}
deleter.cleanupDeadInstructions();
LLVM_DEBUG(llvm::dbgs() << "Access to " << *Property << " was replaced "
<< NumReplaced << " time(s)\n");
if (CanRemove) {
// TODO: Remove the let property, because it is never accessed.
}
}
/// Compare two SILValues structurally.
static bool isStructurallyIdentical(SILValue LHS, SILValue RHS) {
if (LHS == RHS)
return true;
if (LHS->getType() != RHS->getType())
return false;
auto lResult = LHS->getDefiningInstructionResult();
auto rResult = RHS->getDefiningInstructionResult();
assert(lResult && rResult &&
"operands of instructions approved by analyzeStaticInitializer "
"should always be defined by instructions");
return (lResult->ResultIndex == rResult->ResultIndex &&
lResult->Instruction->isIdenticalTo(rResult->Instruction,
isStructurallyIdentical));
}
/// Compare two sequences of SIL instructions. They should be structurally
/// equivalent.
static bool isSameInitSequence(const InitSequence &LHS,
const InitSequence &RHS) {
assert(LHS.isValid() && RHS.isValid());
// This will recursively check all the instructions. It's possible
// that they'll be composed slightly differently, but it shouldn't matter.
return isStructurallyIdentical(LHS.Result, RHS.Result);
}
/// Check if a given let property can be assigned externally.
static bool isAssignableExternally(VarDecl *Property, SILModule *Module) {
if (Module->isVisibleExternally(Property)) {
// If at least one of the properties of the enclosing type cannot be
// used externally, then no initializer can be implemented externally as
// it wouldn't be able to initialize such a property.
// More over, for classes, only the class itself can initialize its
// let properties. Subclasses and extensions cannot do it.
// For structs, external extensions may initialize let properties. But to do
// that they need to be able to initialize all properties, i.e. all
// properties should be accessible by the extension.
auto *Ty = dyn_cast<NominalTypeDecl>(Property->getDeclContext());
// Check for "unusual" decl contexts, e.g. ObjC extensions.
if (!Ty)
return true;
// Initializer for a let property of a class cannot exist externally.
// It cannot be defined by an extension or a derived class.
if (isa<ClassDecl>(Ty))
return false;
// Check if there are any private properties or any internal properties and
// it is a whole module compilation. In this case, no external initializer
// may exist.
for (auto SP : Ty->getStoredProperties()) {
auto storedPropertyAccess = SP->getEffectiveAccess();
if (storedPropertyAccess <= AccessLevel::FilePrivate ||
(storedPropertyAccess <= AccessLevel::Internal &&
Module->isWholeModule())) {
LLVM_DEBUG(llvm::dbgs() << "Property " << *Property
<< " cannot be set externally\n");
return false;
}
}
LLVM_DEBUG(llvm::dbgs() << "Property " << *Property
<< " can be used externally\n");
return true;
}
return false;
}
// Checks if a given property may have any unknown uses which cannot
// be analyzed by this pass.
static bool mayHaveUnknownUses(VarDecl *Property, SILModule *Module) {
if (Property->getDeclContext()->getParentModule() !=
Module->getSwiftModule()) {
LLVM_DEBUG(llvm::dbgs() << "Property " << *Property
<< " is defined in a different module\n");
// We don't see the bodies of initializers from a different module
// unless all of them are fragile.
// TODO: Support fragile initializers.
return true;
}
// If let properties can be assigned externally, we don't know
// the values they may get.
if (isAssignableExternally(Property, Module)) {
return true;
}
return false;
}
/// Check if a given property is a non-static let property
/// with known constant value.
bool LetPropertiesOpt::isConstantLetProperty(VarDecl *Property) {
// Process only non-static let properties here.
if (!Property->isLet() || Property->isStatic())
return false;
// Do not re-process already known properties.
if (SkipProcessing.count(Property))
return false;
// If these checks were performed already, no need to
// repeat them.
if (PotentialConstantLetProperty.count(Property))
return true;
// Check the visibility of this property. If its visibility
// implies that this optimization pass cannot analyze all uses,
// don't process it.
if (mayHaveUnknownUses(Property, Module)) {
LLVM_DEBUG(llvm::dbgs() << "Property '" << *Property
<< "' may have unknown uses\n");
SkipProcessing.insert(Property);
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Property '" << *Property
<< "' has no unknown uses\n");
PotentialConstantLetProperty.insert(Property);
return true;
}
static bool isProjectionOfProperty(SILValue addr, VarDecl *Property) {
addr = stripAccessMarkers(addr);
if (auto *REA = dyn_cast<RefElementAddrInst>(addr)) {
return REA->getField() == Property;
}
return false;
}
// Analyze the init value being stored by the instruction into a property.
bool
LetPropertiesOpt::analyzeInitValue(SILInstruction *I, VarDecl *Property) {
SILValue value;
SILValue dest;
if (auto SI = dyn_cast<StoreInst>(I)) {
dest = stripAccessMarkers(SI->getDest());
value = SI->getSrc();
} else if (auto *copyAddr = dyn_cast<CopyAddrInst>(I)) {
dest = stripAccessMarkers(copyAddr->getDest());
value = copyAddr->getSrc();
} else {
return false;
}
assert(isProjectionOfProperty(dest, Property)
&& "Store instruction should store into a proper let property");
(void)dest;
// Check if it's just a copy from another instance of the struct.
if (auto *LI = dyn_cast<LoadInst>(value)) {
SILValue addr = LI->getOperand();
if (isProjectionOfProperty(addr, Property))
return true;
}
// Bail if a value of a property is not a statically known constant init.
InitSequence sequence;
sequence.Result = value;
if (!analyzeStaticInitializer(value, sequence.Instructions))
return false;
auto &cachedSequence = InitMap[Property];
if (cachedSequence.isValid() &&
!isSameInitSequence(cachedSequence, sequence)) {
// The found init value is different from the already seen init value.
return false;
} else {
LLVM_DEBUG(llvm::dbgs() << "The value of property '" << *Property
<< "' is statically known so far\n");
// Remember the statically known value.
cachedSequence = std::move(sequence);
return true;
}
}
/// Check if I is a sequence of projections followed by a load.
/// Since it is supposed to be a load from a let property with
/// statically known constant initializer, only struct_element_addr
/// and tuple_element_addr projections are considered.
static bool isValidPropertyLoad(SILInstruction *I) {
if (isa<LoadInst>(I))
return true;
if (isa<StructElementAddrInst>(I) || isa<TupleElementAddrInst>(I)
|| isa<BeginAccessInst>(I)) {
auto projection = cast<SingleValueInstruction>(I);
for (auto Use : getNonDebugUses(projection)) {
if (isIncidentalUse(Use->getUser()))
continue;
if (!isValidPropertyLoad(Use->getUser()))
return false;
}
return true;
}
return false;
}
/// Remember where this property is accessed.
void LetPropertiesOpt::collectPropertyAccess(SingleValueInstruction *I,
VarDecl *Property,
bool NonRemovable) {
if (!isConstantLetProperty(Property))
return;
LLVM_DEBUG(llvm::dbgs() << "Collecting property access for property '"
<< *Property << "':\n";
llvm::dbgs() << "The instructions are:\n"; I->dumpInContext());
// Ignore the possibility of duplicate worklist entries. They cannot effect
// the SkipProcessing result, and we don't expect any exponential path
// explosion because none of the instructions have multiple address operands.
SmallVector<SingleValueInstruction *, 8> worklist = {I};
while (!worklist.empty()) {
// Check if there is a store to this property.
auto *projection = worklist.pop_back_val();
for (auto Use : getNonDebugUses(projection)) {
auto *User = Use->getUser();
if (isIncidentalUse(User)) {
continue;
}
if (auto *bai = dyn_cast<BeginAccessInst>(User)) {
worklist.push_back(bai);
continue;
}
if (auto *copyAddr = dyn_cast<CopyAddrInst>(User)) {
if (copyAddr->getDest() != projection ||
!analyzeInitValue(copyAddr, Property)) {
SkipProcessing.insert(Property);
return;
}
continue;
}
if (auto *SI = dyn_cast<StoreInst>(User)) {
// There is a store into this property.
// Analyze the assigned value and check if it is a constant
// statically known initializer.
if (SI->getDest() != projection || !analyzeInitValue(SI, Property)) {
SkipProcessing.insert(Property);
return;
}
continue;
}
// Follow the chain of projections and check if it ends up with a load.
// If this is not the case, it is potentially a store into sub-property
// of a property.
// We cannot handle such cases yet, so bail.
if (!isValidPropertyLoad(User)) {
SkipProcessing.insert(Property);
return;
}
}
}
AccessMap[Property].push_back(I);
// If any property is marked as non-removable, their initialization
// and storage cannot be completely removed. But their constant
// values can still be propagated into their uses whenever possible.
if (NonRemovable)
CannotRemove.insert(Property);
}
void LetPropertiesOpt::run(SILModuleTransform *T) {
// Collect property access information for the whole module.
for (auto &F : *Module) {
// Take into account even those functions that should not be
// optimized, because they may contain access to the let
// properties.
bool NonRemovable = !F.shouldOptimize();
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *REAI = dyn_cast<RefElementAddrInst>(&I))
collectPropertyAccess(REAI, REAI->getField(), NonRemovable);
}
}
}
for (auto &Init: InitMap) {
optimizeLetPropertyAccess(Init.first, Init.second);
}
for (SILFunction *ChangedFn : ChangedFunctions) {
// Program flow is not changed by this pass.
T->invalidateAnalysis(ChangedFn,
SILAnalysis::InvalidationKind::Instructions);
}
}
namespace {
class LetPropertiesOptPass : public SILModuleTransform
{
void run() override {
LetPropertiesOpt(getModule()).run(this);
}
};
} // end anonymous namespace
SILTransform *swift::createLetPropertiesOpt() {
return new LetPropertiesOptPass();
}