187
187
188
188
189
189
< div class ="version ">
190
- < a href ='http://pytorch.org/docs/versions.html '> 1.8.0a0+49b090d ▼</ a >
190
+ < a href ='http://pytorch.org/docs/versions.html '> 1.8.0a0+adf8b7e ▼</ a >
191
191
</ div >
192
192
193
193
269
269
< li class ="toctree-l1 "> < a class ="reference internal " href ="../onnx.html "> torch.onnx</ a > </ li >
270
270
< li class ="toctree-l1 "> < a class ="reference internal " href ="../optim.html "> torch.optim</ a > </ li >
271
271
< li class ="toctree-l1 "> < a class ="reference internal " href ="../complex_numbers.html "> Complex Numbers</ a > </ li >
272
+ < li class ="toctree-l1 "> < a class ="reference internal " href ="../pipeline.html "> Pipeline Parallelism</ a > </ li >
272
273
< li class ="toctree-l1 "> < a class ="reference internal " href ="../quantization.html "> Quantization</ a > </ li >
273
274
< li class ="toctree-l1 "> < a class ="reference internal " href ="../rpc.html "> Distributed RPC Framework</ a > </ li >
274
275
< li class ="toctree-l1 "> < a class ="reference internal " href ="../random.html "> torch.random</ a > </ li >
@@ -626,7 +627,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
626
627
< span class ="k "> return</ span > < span class ="n "> module</ span > < span class ="o "> +</ span > < span class ="n "> class_name</ span >
627
628
628
629
629
- < div class =" viewcode-block " id =" is_tensor " > < a class =" viewcode-back " href =" ../generated/torch.is_tensor.html#torch.is_tensor " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
630
+ < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
630
631
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch tensor.</ span >
631
632
632
633
< span class ="sd "> Note that this function is simply doing ``isinstance(obj, Tensor)``.</ span >
@@ -637,19 +638,19 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
637
638
< span class ="sd "> Args:</ span >
638
639
< span class ="sd "> obj (Object): Object to test</ span >
639
640
< span class ="sd "> """</ span >
640
- < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span > </ div >
641
+ < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span >
641
642
642
643
643
- < div class =" viewcode-block " id =" is_storage " > < a class =" viewcode-back " href =" ../generated/torch.is_storage.html#torch.is_storage " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
644
+ < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
644
645
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch storage object.</ span >
645
646
646
647
< span class ="sd "> Args:</ span >
647
648
< span class ="sd "> obj (Object): Object to test</ span >
648
649
< span class ="sd "> """</ span >
649
- < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span > </ div >
650
+ < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span >
650
651
651
652
652
- < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
653
+ < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
653
654
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
654
655
< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
655
656
< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -670,10 +671,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
670
671
< span class ="sd "> """</ span >
671
672
< span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
672
673
< span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
673
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
674
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
674
675
675
676
676
- < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
677
+ < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
677
678
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default floating point dtype to :attr:`d`.</ span >
678
679
< span class ="sd "> This dtype is:</ span >
679
680
@@ -701,9 +702,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
701
702
< span class ="sd "> torch.complex128</ span >
702
703
703
704
< span class ="sd "> """</ span >
704
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
705
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
705
706
706
- < div class =" viewcode-block " id =" use_deterministic_algorithms " > < a class =" viewcode-back " href =" ../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
707
+ < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
707
708
< span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
708
709
< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
709
710
< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -780,7 +781,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
780
781
< span class ="sd "> d (:class:`bool`): If True, force operations to be deterministic.</ span >
781
782
< span class ="sd "> If False, allow non-deterministic operations.</ span >
782
783
< span class ="sd "> """</ span >
783
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
784
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
784
785
785
786
< span class ="k "> def</ span > < span class ="nf "> set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
786
787
< span class ="sa "> r</ span > < span class ="sd "> """This function is deprecated and will be removed in a future release.</ span >
0 commit comments